## Journal Name



## ARTICLE

Supporting Information for:

# Kagome-type Isostructural 3D-Transition Metal Fluorosulfates with Spin 3/2 and 1: Synthesis, Structure and characterization

Subba R. Marri,<sup>a</sup> Jitendra Kumar,<sup>a</sup> Kitt Panyarat,<sup>b</sup> Satoshi Horike<sup>c</sup> and J. N. Behera<sup>a</sup>\*



Fig. S1 FTIR spectra of  $[H_3O][Co(SO_4)F]$ , 1 and  $[H_3O][Ni(SO_4)F]$ , 2.





| Element | Weight (%) | Atomic (%) |
|---------|------------|------------|
| ОК      | 36.97      | 37.08      |
| FΚ      | 24.31      | 28.48      |
| S K     | 18.40      | 16.77      |
| Co L    | 20.32      | 17.67      |
| Total   | 100.00     |            |



| Element | Weight (%) | Atomic (%) |
|---------|------------|------------|
| ОК      | 46.48      | 54.57      |
| FK      | 16.60      | 24.15      |
| S K     | 17.53      | 10.16      |
| Ni L    | 18.89      | 11.12      |
| Total   | 100.00     |            |

Fig. S3. EDAX analysis of (a) of  $[H_3O][Co(SO_4)F]$ , 1, (b)  $[H_3O][Ni(SO_4)F]$ , 2



Fig. S5 N2 adsorption isotherm for Compound  $[H_3O][Ni(SO_4)F]$ , 2



### Fig. S6 Temperature dependent PXRD patterns $[H_3O][Ni(SO_4)F]$ , 2

Table S1. Complete list of bond lengths [Å] and bond angles [º] for 1-2

| [H <sub>3</sub> O][Co(SO <sub>4</sub> )F], <b>1</b> |            |                                          |              |                |            |  |  |
|-----------------------------------------------------|------------|------------------------------------------|--------------|----------------|------------|--|--|
| Co1-F1                                              | 1.991(4)   | Co2-F1                                   | 1.999(4)     | S1-01          | 1.472(4)   |  |  |
| Co1-O1                                              | 2.056(4)   | Co2-O4                                   | 2.073(4)     | S1-02          | 1.468(4)   |  |  |
| Co1-O3                                              | 2.154(4)   | Co2-O2                                   | 2.171(4)     | S2-O3          | 1.467(4)   |  |  |
|                                                     |            |                                          |              | S2-O4          | 1.479(4)   |  |  |
| F1-Co1-F1i                                          | 180.0(2)   | F1-Co2-F1ii                              | 88.0(2)      | 01-S1-01iii    | 106.1(4)   |  |  |
| F1-Co1-O1                                           | 91.06(17)  | F1-Co2-O2                                | 92.94(17)    | 01-S1-O2       | 110.9(2)   |  |  |
| F1-Co1-O1i                                          | 88.94(17)  | F1-Co2-O2ii                              | 91.23(18)    | 01-S1-O2iii    | 110.3(3)   |  |  |
| F1-Co1-O3                                           | 92.82(15)  | F1-Co2-O4                                | 89.21(17)    | 02-S1-02iii    | 108.4(4)   |  |  |
| F1-Co1-O3i                                          | 87.18(15)  | F1-Co2-O4ii                              | 177.05(17)   | 03-S2-O3iv     | 109.4(4)   |  |  |
| 01-Co1-O1i                                          | 180.00(17) | O2-Co2-O2ii                              | 174.2(2)     | O3-S2-O4       | 111.1(2)   |  |  |
| 01-Co1-O3                                           | 88.77(17)  | O2-Co2-O4                                | 88.13(17)    | 03-S2-O4iv     | 109.0(3)   |  |  |
| 01-Co1-O3i                                          | 91.23(17)  | O2-Co2-O4ii                              | 87.91(17)    | 04-S2-O4iv     | 107.2(4)   |  |  |
| 03-Co1-O3i                                          | 180.00(4)  | O4-Co2-O4ii                              | 93.6(3)      | Co1-F1-Co2     | 126.2(2)   |  |  |
| S1-01-Co1                                           | 135.6(3)   | S1-O2-Co2                                | 136.3(3)     | S2-O3-Co1      | 134.3(3)   |  |  |
| S2-O4-Co2                                           | 136.4(3)   |                                          |              |                |            |  |  |
|                                                     |            | [H <sub>3</sub> O][Ni(SO <sub>4</sub> )F | ·], <b>2</b> |                |            |  |  |
| Ni1-F1                                              | 1.966(3)   | Ni2-F1                                   | 1.968(4)     | S1-01          | 1.474(4)   |  |  |
| Ni1-O3                                              | 2.051(4)   | Ni2-02                                   | 2.033(4)     | S1-O2vi        | 1.470(4)   |  |  |
| Ni1-01                                              | 2.138(4)   | Ni2-04                                   | 2.110(4)     | S2-O4          | 1.470(4)   |  |  |
|                                                     |            |                                          |              | S2-O3vi        | 1.479(4)   |  |  |
| F1-Ni1-F1v                                          | 89.3(2)    | F1-Ni2-F1vi                              | 180.0(2)     | 01-S1-01vii    | 108.4(3)   |  |  |
| F1-Ni1-O1                                           | 92.88(16)  | F1-Ni2-O2                                | 89.01(16)    | 01-S1-O2vi     | 111.1(2)   |  |  |
| F1-Ni1-O1v                                          | 91.16(17)  | F1-Ni2-O2vi                              | 90.99(16)    | 01-S1-02viii   | 110.2(2)   |  |  |
| F1-Ni1-O3                                           | 88.93(16)  | F1-Ni2-O4                                | 87.41(15)    | O2vi-S1-O2viii | 105.9(4)   |  |  |
| F1-Ni1-O3v                                          | 178.07(16) | F1-Ni2-O4vi                              | 92.59(15)    | 04-S2-O4ix     | 108.9(3)   |  |  |
| 01-Ni1-01v                                          | 174.3(2)   | O2-Ni2-O2vi                              | 180.00(15)   | 04-S2-O3vi     | 111.0(2)   |  |  |
| 01-Ni1-O3                                           | 88.24(17)  | 02-Ni2-O4                                | 88.98(16)    | 04-S2-O3x      | 109.1(2)   |  |  |
| 01-Ni1-O3v                                          | 87.84(16)  | O2-Ni2-O4vi                              | 91.02(16)    | O3vi-S2-O3x    | 107.7(4)   |  |  |
| 03-Ni1-O3v                                          | 92.9(2)    | 04-Ni2-O4vi                              | 180.0(2)     | Ni1-F1-Ni2     | 127.27(19) |  |  |
| S1-O1-Ni1                                           | 136.1(3)   | S1vi-O2-Ni2                              | 134.8(3)     | S2vi-O3-Ni1    | 136.0(3)   |  |  |
| S2-O4-Ni2                                           | 133.8(3)   |                                          |              |                |            |  |  |

Symmetry elements (i) -x+1, -y, -z; (ii) x, -y+1/2, -z+1/2; (iii) x, -y+1/2, -z-1/2; (iv) -x+3/2, -y, z; (v) x, -y+1/2, -z+1/2; (vi) -x+1, -y, -z; (vii) x, -y+1/2, -z-1/2; (viii) -x+1, y+1/2, -z-1/2; (iv) -x+1/2, -y, z; (v) x, -y+1/2, -z-1/2; (vi) -x+1/2, -y-1/2; (vi) -x+1/2; (vi)

Table S2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for 1-2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

|     | х                                            | У       | Z       | U(eq) |                        | х        | У        | Z        | U(eq) |  |
|-----|----------------------------------------------|---------|---------|-------|------------------------|----------|----------|----------|-------|--|
|     | [H <sub>3</sub> O][Co(SO <sub>4</sub> )F], 1 |         |         |       |                        |          |          |          |       |  |
| Co1 | 5000                                         | 0       | 0       | 11(1) | 01                     | 5030(3)  | 1430(4)  | -2081(7) | 17(1) |  |
| Co2 | 6269(1)                                      | 2500    | 2500    | 10(1) | 02                     | 6352(3)  | 2770(4)  | -752(7)  | 17(1) |  |
| S1  | 5701(1)                                      | 2500    | -2500   | 12(1) | 04                     | 7345(3)  | 1097(4)  | 2202(7)  | 19(1) |  |
| S2  | 7500                                         | 0       | 874(3)  | 11(1) | 03                     | 6610(3)  | -221(4)  | -409(6)  | 15(1) |  |
| F1  | 5178(3)                                      | 1209(4) | 2266(7) | 23(1) | O1Wa                   | 3552(11) | 1836(13) | 4420(20) | 41(4) |  |
|     |                                              |         |         |       | O1Wb                   | 3680(10) | 716(14)  | 4650(20) | 45(4) |  |
|     |                                              |         |         | [H₃C  | )][Ni(SO₄)F], <b>2</b> |          |          |          |       |  |
| Ni1 | 6267(1)                                      | 2500    | 2500    | 9(1)  | 01                     | 6348(3)  | 2778(4)  | -730(6)  | 15(1) |  |
| Ni2 | 5000                                         | 0       | 0       | 10(1) | 02                     | 4994(3)  | -1425(4) | 2077(6)  | 14(1) |  |
| S1  | 5686(1)                                      | 2500    | -2500   | 10(1) | 03                     | 7353(3)  | 1112(4)  | 2197(6)  | 17(1) |  |
| S2  | 2500                                         | 0       | -865(3) | 9(1)  | 04                     | 3403(3)  | 207(4)   | 441(6)   | 14(1) |  |
| F1  | 5192(3)                                      | 1207(3) | 2253(6) | 19(1) | O1Wa                   | 3535(8)  | 1879(9)  | 4378(18) | 37(4) |  |
|     |                                              |         |         |       | O1Wb                   | 3663(8)  | 693(10)  | 4654(17) | 40(4) |  |

| Table S3. Anisotropic displacement parameters | s (Å2 x 103) for 1-2.The anisotr | opic displacement factor exponent | takes the form: $-2 \pi 2$ [h2 a*2 U11 + | + 2 h k a* b* U12 ] |
|-----------------------------------------------|----------------------------------|-----------------------------------|------------------------------------------|---------------------|
|-----------------------------------------------|----------------------------------|-----------------------------------|------------------------------------------|---------------------|

|     | U11                                                 | U22   | U33   | U23   | U13   | U12    |            | U11   | U22    | U33   | U23   | U13   | U12    |
|-----|-----------------------------------------------------|-------|-------|-------|-------|--------|------------|-------|--------|-------|-------|-------|--------|
|     | [H <sub>3</sub> O][Co(SO <sub>4</sub> )F], <b>1</b> |       |       |       |       |        |            |       |        |       |       |       |        |
| Co1 | 12(1)                                               | 9(1)  | 13(1) | 1(1)  | -1(1) | -2(1)  | 01         | 20(2) | 17(2)  | 14(2) | 7(2)  | -4(2) | -7(2)  |
| Co2 | 9(1)                                                | 10(1) | 11(1) | -1(1) | 0     | 0      | 02         | 18(2) | 21(2)  | 12(2) | 0(2)  | -2(2) | -4(2)  |
| S1  | 13(1)                                               | 11(1) | 11(1) | 1(1)  | 0     | 0      | 04         | 21(2) | 17(2)  | 19(2) | -7(2) | -4(2) | 9(2)   |
| S2  | 9(1)                                                | 11(1) | 11(1) | 0     | 0     | 2(1)   | 03         | 9(2)  | 21(2)  | 17(2) | -4(2) | -3(1) | 0(2)   |
| F1  | 19(2)                                               | 20(2) | 29(2) | -8(2) | 6(2)  | -9(1)  | O1Wa       | 39(7) | 43(8)  | 42(8) | -2(6) | 9(6)  | -16(6) |
|     |                                                     |       |       |       |       |        | O1Wb       | 37(7) | 60(10) | 38(7) | -6(6) | 9(6)  | -7(6)  |
|     |                                                     |       |       |       |       | [H₃O][ | Ni(SO₄)F], | 2     |        |       |       |       |        |
| Ni1 | 9(1)                                                | 9(1)  | 10(1) | -1(1) | 0     | 0      | 01         | 16(2) | 17(2)  | 10(2) | 0(2)  | -1(2) | -4(2)  |
| Ni2 | 10(1)                                               | 7(1)  | 12(1) | 1(1)  | -1(1) | -1(1)  | 02         | 18(2) | 14(2)  | 11(2) | 7(2)  | -4(2) | -7(2)  |
| S1  | 10(1)                                               | 9(1)  | 10(1) | 1(1)  | 0     | 0      | 03         | 17(2) | 17(2)  | 16(2) | -7(2) | -2(2) | 7(2)   |
| S2  | 9(1)                                                | 10(1) | 9(1)  | 0     | 0     | 2(1)   | 04         | 10(2) | 17(2)  | 14(2) | -2(2) | -3(1) | -1(2)  |
| F1  | 17(2)                                               | 15(2) | 23(2) | -4(1) | 4(2)  | -6(1)  | O1Wa       | 37(7) | 31(6)  | 42(7) | 3(5)  | 7(5)  | -8(5)  |
|     |                                                     |       |       |       |       |        | O1Wb       | 36(7) | 54(8)  | 32(7) | -3(5) | 9(5)  | -11(6) |

Table S4. Performance indicators for water-mediated proton-conductor

| Compound                                                                 | Proton                | Activation energy | Temperature (°C) and  | Reference |
|--------------------------------------------------------------------------|-----------------------|-------------------|-----------------------|-----------|
|                                                                          | conductivity          | (eV)              | Relative humidity (%) |           |
|                                                                          | (S Cm <sup>-1</sup> ) |                   |                       |           |
| $[Mo_5P_2O_{23}][Cu(phen)(H_2O)]_3.5 H_2O phen=$                         | 2.2×10 <sup>-5</sup>  | 0.23              | 28 °C, 98 % RH        | 1         |
| phenanthroline                                                           |                       |                   |                       |           |
| $(NH_4)_2(adp)[Zn_2(ox)_3]\cdot 3 H_2O adp=adipate$                      | 8×10 <sup>-3</sup>    | 0.63              | 25 °C, 98 % RH        | 2         |
| V[Cr(CN) <sub>6</sub> ] <sub>2/3</sub> nH <sub>2</sub> O                 | 2.6×10 <sup>-3</sup>  | 0.1               | 50 °C, 100 % RH       | 3         |
| $[Eu_{L}(H_{2}O)_{3}]\cdot 2H_{2}O$ (L = N-phenyl-N'-phenyl bicyclo      | 1.6×10 <sup>-5</sup>  | 0.91              | 75 °C, 97% RH         | 4         |
| [2,2,2]-oct-7- ene-2,3,5,6-tetracarboxdiimide                            |                       |                   |                       |           |
| tetracarboxylic acid)                                                    |                       |                   |                       |           |
| $Eu_2(CO_3)(ox)_2(H2O)_2]\cdot 4H_2O$ (ox = oxalate)                     | 2.08×10 <sup>-3</sup> | 0.47 (25–90 °C)   | 150 °C                | 5         |
|                                                                          |                       | 0.26 (100-150 °C) |                       |           |
| K₂(H₂adp)[Zn₂(ox)₃]·3H₂O                                                 | 1.2×10 <sup>-4</sup>  | 0.45              | 98% RH                | 6         |
| Cu <sub>3</sub> [Co(CN) <sub>6</sub> ]2·nH <sub>2</sub> O                | 2.57×10 <sup>-5</sup> | 1.21              | 100 % RH, 27 °C       | 7         |
| UiO-66                                                                   | 6.93×10 <sup>-3</sup> | 0.22              | 65 °C ,95 % RH        | 8         |
| [Zn(/-L <sub>cl</sub> )(Cl)]·H2O L <sub>Cl</sub> =3-methyl-2-(pyridin-4- | 4.45×10 <sup>-5</sup> | 0.35              | 30 °C, 98 % RH        | 9         |
| ylmethylamino)- butanoic acid                                            |                       |                   |                       |           |
| HKUST-1-H <sub>2</sub> O                                                 | 1.5×10 <sup>-5</sup>  | n/a               | RT, methanol vapor    | 10        |
| CMOF-3                                                                   | 3.5×10-5              | 0.17              | RT, 98 % RH           | 11        |

#### **References:**

[1] C. Dey, T. Kundu and R. Banerjee, Chem. Commun., 2012, 48, 266.

[2] M. Sadakiyo, T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 2009, 131, 9906.

[3] S.-i. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi and H. Tokoro, J. Am. Chem. Soc., 2010, 132, 6620.

[4] M. Zhu, Z.-M. Hao, X.-Z. Song, X. Meng, S.-N. Zhao, S.-Y. Song and H.-J. Zhang, *Chem. Commun.*, 2014, **50**, 1912.

[5] Q. Tang, Y. Liu, S. Liu, D. He, J. Miao, X. Wang, G. Yang, Z. Shi and Z. Zheng, J. Am. Chem. Soc., 2014, 136, 12444.

[6] M. Sadakiyo, T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 2014, 136, 13166.

[7] C. Xiao, Z. Chu, X.-M. Ren, T.-Y. Chen and W. Jin, Chem. Commun., 2015, 51, 7947.

[8] J. M. Taylor, S. Dekura, R. Ikeda and H. Kitagawa, Chem. Mater., 2015, 27, 2286.

[9] S. C. Sahoo, T. Kundu and R. Banerjee, J. Am. Chem. Soc., 2011, 133, 17950.

[10] N. C. Jeong, B. Samanta, C. Y. Lee, O. K. Farha and J. T. Hupp, J. Am. Chem. Soc., 2011, **134**, 51.

[11] J. M. Taylor, R. K. Mah, I. L. Moudrakovski, C. I. Ratcliffe, R. Vaidhyanathan and G. K. Shimizu, J. Am. Chem. Soc., 2010, 132, 14055.