Supporting Information

Recovery of uranium from aqueous solutions by the modified honeycomb-like porous carbon material

Jiahui Zhu,^a Qi Liu,^{*a} Zhanshuang Li,^a Jingyuan Liu,^a Hongsen Zhang,^a Rumin Li,^a and Jun Wang,^{*a, b} G.A. Emelchenko,^c

^a Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin

150001, China. Fax: +86 451 8253 3026; Tel: +86 451 8253 3026; E-mail address: zhqw1888@sohu.com

^b Institute of Advanced Marine Materials, Harbin Engineering University, 150001, China.

^c Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, 142432, Russia.

* Corresponding author: Tel.: +86 451 8253 3026; Fax: +86 451 8253 3026; E-mail: zhqw1888@sohu.com.

Fig. S1. The C1s spectra of HLPC/MnO₂ (a) and HLPC/MnO₂/U.

Fig. S2 (a) and (b) the pore size distributions of HLPC/MnO₂ and HLPC/MnO₂/U. The inset of (a) and (b) is N₂ adsorption/desorption isotherm of HLPC/MnO₂ and HLPC/MnO₂ /U.

Fig. S3 Intra-particle diffusion kinetics for the adsorption of uranyl ions on HLPC/MnO $_2$

Fig. S4 Selected results of HLPC/MnO₂ for the extraction of uranyl ions from simulating seawater.

Table S1 Elemental composition of the $HLPC/MnO_2$ and $HLPC/MnO_2/U$ samples determined by XPS spectra.

		XP	PS			Binging	g energy	
Sample	С	0	Mn	U	С	0	Mn	U
	at%	at%	at%	at%	ev	ev	ev	ev
HLPC/MnO ₂	47.51	38.02	14.47	0	278.08	523.58	634.08	_
HLPC/MnO ₂ /U	32.92	49.58	16.47	1.03	284.74	530.22	642.11	381.85

Table S2 Parameters of the intra-particle diffusion model of uranium (VI) adsorption on

HLPC/MnO2

T(K)	\mathbf{k}_{p1}	R_{1}^{2}	\mathbf{k}_{p2}	${\bf R_2}^2$	k _{p3}	${\bf R_{3}}^{2}$
298	5.148	0.975	1.032	0.876	0.173	0.316

Table. S3 Isotherm constants and values of R² for HLPC/MnO₂.

T(K) —	Lang	Freundich isotherm				
	$q_m \pmod{\operatorname{eg}^{-1}}$	$b (L mg^{-1})$	R^2	$K (Lg^{-1})$	п	R^2
298	238.09	0.3258	0.998	69.01	0.3248	0.896
308	262.47	0.2679	0.994	73.34	0.3320	0.667
318	271.74	0.6513	0.998	99.26	0.3024	0.919

Adsorbents	Adsorption Capacity mg-U/g-adsorbent	Conditions	Ref.
MnO ₂ -coating of the cactus fibres	62	$C_{initial} = 9 \times 10^{-6} - 9 \times 10^{-4} \text{ mol } \text{L}^{-1},$ m = 10mg, V = 15 ml, T = 298 K, pH=6	[1]
Salicylideneimine-functi onalized hydrothermal carbon	261	C _{initial} = 0.2 - 1.3 mmol L ⁻¹ , m = 10 mg, V = 20 ml T = 288.15 K, pH=4.3	[2]
CaCl ₂ -modified Giant Kelp biomass	156.25	C _{initial} = $20 - 100 \text{ mg L}^{-1}$, m = 50 mg, V = 100 ml, T = 293 K, pH =5	[3]
imine-functionalized carbon spheres	113.16	C _{initial} = $1 - 100 \text{ mg L}^{-1}$, m = 50mg, V = 20 ml, T = 298K, pH=4	[4]
starch/SnO2	192	$C_{initial} = 10 - 150 \text{ mg L}^{-1},$ m = 100 mg, V = 250 ml T = 298 K, pH = 6	[5]
ion-imprinted magnetic chitosan resins	187.26	C _{initial} = $15 - 420 \text{ mg L}^{-1}$, m = 50 mg, V = 50 ml T = 298 K, pH = 5	[6]
Graphene oxide-manganese dioxide	185.2	C _{initial} = $22.5 - 70 \text{ mg L}^{-1}$, m = 10 mg, V = 20 ml T = 298 K, pH = 3.8	[7]
HLPC-MnO ₂	238.09	C _{initial} = $30 - 300 \text{ mg L}^{-1}$, m = 10 mg, V = 20 ml T = 298 K, pH = 5	this work

Table. S4 The maximum adsorption capacity of different adsorbents for uranium (VI).

	Ion concentration	Removal	
Elements	initial	final	(%)
U	3.131	0.026	99.16
Pb	0.424	0.251	40.8
V	0.489	0.335	31.49
Na	1.521×10^4	1.162×10^4	23.60
Sc	249.1	207.4	16.74
Li	17.61	15.24	13.46
Sn	12.35	11.27	8.74
Со	0.63	0.575	8.73
Mg	6.289×10^3	5.104×10^{3}	6.44
Ca	9.169×10^{3}	8.563×10^{3}	6.61
Ag	0.521	0.504	3.26
Fe	104.3	103.9	0.38

Table S5. Selected results for the extraction of uranyl ions from simulated seawater

References

- 1. M. Prodromou and I. Pashalidis, J. Radioanal. Nucl. Chem., 2013, 298, 1587-1595.
- H. Wang, L. Ma, K. Cao, J. Geng, J. Liu, Q. Song, X. Yang and S. Li, J. Hazard. Mater., 2012, 229, 321-330.
- L. Zhou, Y. Wang, H. Zou, X. Liang, K. Zeng, Z. Liu and A. A. Adesina, J. Radioanal. Nucl. Chem., 2016, 307, 635-644.
- 4. S. P. Dubey, A. D. Dwivedi, M. Sillanpää, Y.-N. Kwon and C. Lee, *RSC Adv.*, 2014, 4, 46114-46121.
- 5. M. Naushad, T. Ahamad, G. Sharma, H. Ala'a, A. B. Albadarin, M. M. Alam, Z. A. ALOthman, S. M. Alshehri and A. A. Ghfar, *Chem. Eng. J*, 2016, **300**, 306-316.
- L. Zhou, C. Shang, Z. Liu, G. Huang and A. A. Adesina, J. Colloid Interf. Sci., 2012, 366, 165-172.
- N. Pan, L. Li, J. Ding, S. Li, R. Wang, Y. Jin, X. Wang and C. Xia, J. Hazard. Mater., 2016, 309, 107-115.