The Selective Activation of C-F Bond with the Auxiliary of Strong Lewis Acid --- A Method to Change the Activation Preference of C-F and C-H bond

Lin Wang,^a Hongjian Sun,^a Xiaoyan Li,^{a,*} Olaf Fuhr,^b Dieter Fenske^b

SI. Selected X-ray crystallographic data

	10*	11	12
formula	C ₂₅ H ₄₄ BF ₆ FeNP ₄	C23H38BrFFeNP3	C ₂₆ H ₄₄ FFeINP ₃
M_z	663.15	576.21	665.28
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	P2(1)/n	P2(1)/c	P2(1)/c
a [Å]	11.7534(1)	8.9625(3)	15.6776(12)
b [Å]	19.4894(2)	33.2859(13)	13.1670(11)
c [Å]	14.8134(1)	9.0190(3)	16.6228(17)
α [°]	90.00	90.00	90.00
β [°]	93.7660(1)	95.341(3)	118.742(5)
γ [°]	90.00	90.00	90.00
V [Å ³]	3385.9(5)	2678.91(2)	3008.6(5)
T [K]	296(2)	153(2)	296(2)
Ζ	4	4	4
μ[mm ⁻¹]	0.683	2.252	1.708
total reflns	25229	7826	42857
unique reflns	7774	4112	7226
R _{int}	0.0306	0.0487	0.0858
$R_1[I \ge 2\sigma(I)]$	0.0352	0.0533	0.0624
$wR(F^2)$	0.1014	0.1477	0.1558
[I>2σ(I)]			
R ₁ (all data)	0.0456	0.0594	0.0957
wR(F ²)(all data)	0.1135	0.1544	0.1778
GOF on F ²	0.541	1.079	1.084

* The disorder solvent voids were squeezed. Based on the squeezed result, there are about 2.8 ethyl ether molecules in one cell.

SII. The detailed crystal data of complex Complex 10

Fe(1)-C(13): 2.0164(2) Å, Fe(1)-N(1): 1.9858(2) Å, F(3)-B(1): 1.389(3) Å, F(4)-B(1): 1.370(3) Å, F(5)-B(1): 1.380(3) Å, F(6)-B(1): 1.367(3) Å. C(13)-Fe(1)-P(3): 171.72(6)°, P(1)-Fe(1)-P(3): 91.19(2)°

Complex 11

Fe(1)-Br(1): 2.5653(7) Å, Fe(1)-N(1): 1.945(4) Å, P(2)-Fe(1)-N(1): 175.45(1) °, P(1)-Fe(1)-C(1): 93.38(15) °

Complex 12

Fe(1)-I(1): 2.7478(9) Å, Fe(1)-N(1): 1.930(5) Å, P(2)-Fe(1)-P(3): 94.01(7) °, P(1)-Fe(1)-P(3): 172.69(7) °

SIII. The IR and NMR data of complexes

Note: Complex 8 was synthesized in diethyl ether.

^{19}F {H} NMR spectrum (C₆D₆)

Note: Complex 8 was synthesized in ethyl ether.

 ^{31}P {H} NMR spectrum (C₆D₆)

Note: Complex 8 was synthesized in diethyl ether

Note: Complex 8 was synthesized in diethyl ether.

Complex 9

Isomers will be generated in solvent

¹H NMR spectrum (C₆D₆)

Note: Complex 9 was synthesized in diethyl ether. The signals at 1.01 and 1.05 ppm are the signals of PMe_3 contained by isomers.

¹⁹F $\{H\}$ NMR spectrum (C₆D₆)

Note: Complex 9 was synthesized in diethyl ether. The signals at -111.7 and -105.4 ppm are the signals of isomers.

³¹P {H} NMR spectrum (C_6D_6)

Note: Complex 9 was synthesized in diethyl ether. The signals at 17.9 ppm and 17.0 ppm are the signals of isomers.

Complex 10

Note: Complex 10 was synthesized in THF and crystalized in THF/diethyl ether mix solvent. ¹⁹F $\{H\}$ NMR spectrum (C₂D₆CO)

Note: Complex **10** was synthesized in THF and crystalized in THF/diethyl ether mix solvent. The signals at -114.2 and -152.0 ppm are the signal of isomer.

³¹P {H} NMR spectrum (C_2D_6CO)

³¹P {H} NMR (121.5 MHz, C₆D₆, 298 K, ppm): δ 3.4 (td, ²J_{P,P} = 36.4 Hz, ²J_{P,P} = 7.3 Hz, Pd(c)), 11.6 (dd, ²J_{P,P} = 36.4 Hz, ²J_{P,P} = 51.0 Hz, Pa & Pb), 16.1 (td, ²J_{P,P} = 51.0 Hz, ²J_{P,P} = 7.3 Hz, Pc(d)). The signals at 14 ppm are the signals of isomer produced by dissociation of PMe₃ ligand of complex **10** in solvent and the signal of dissociated PMe₃ ligand appears at -62.4 ppm.

¹³C {H} NMR spectrum (C_2D_6CO)

Complex 11

Note: Complex **11** was synthesized in diethyl ether. In solvent (C_6D_6), complex **11** would dissociate a PMe₃ ligand in some extent. The signals at 1.52, 1.27 ppm are the signal of this product.

¹⁹F {H} NMR spectrum (C_6D_6)

Note: Complex 11 was synthesized in diethyl ether.

 ^{31}P {H} NMR spectrum (C₆D₆)

Note: Complex 11 was synthesized in diethyl ether. In solvent (C_6D_6), complex 11 would dissociate a PMe₃ ligand in some extent. The doublet at 15 ppm is the signal of this product.

^{13}C {H} NMR spectrum (C₆D₆)

Complex 12

¹H NMR spectrum (C_6D_6)

Note. In solvent (C₆D₆), the arrange of PMe₃ will occur. And In solvent (C₆D₆), complex **12** would dissociate a PMe₃ ligand in some extent. The signals of different isomers: 12.9 ppm (d, ${}^{2}J_{P,P} = 56.9$ Hz) and 19.2 ppm (d, ${}^{2}J_{P,P} = 56.9$ Hz); 13.1ppm (d, ${}^{2}J_{P,P} = 55.9$ Hz) and 20.0 ppm (d, ${}^{2}J_{P,P} = 55.9$ Hz); 12.1 ppm (d, ${}^{2}J_{P,P} = 58.3$ Hz); 11.9 ppm (d, ${}^{2}J_{P,P} = 57.1$ Hz).

^{19}F {H} NMR spectrum (C₆D₆)

Note. The signals of different isomers: -104.9 ppm; -108.8 ppm; -111.6 ppm.

¹³C {H} NMR spectrum (C₆D₆)

Note. Isomers exist.

Complex 13

¹H NMR spectrum (C_6D_6)

Note: Complexes **13a** and **13b** were synthesized in diethyl ether and crystalized in n-pentane. ¹H NMR (300 MHz, C₆D₆, 298K, ppm): δ -15.92, -15.26 (td, ²*J*_{P, H} = 21.0 Hz, ²*J*_{P, H} = 84.0 Hz, 1 H, Fe-*H*), 1.05 (m, 27 H, P(C*H*₃)₃), 7.25 – 8.41 (m, 8H, Ar-*H*), 9.53, 9.91 (s, 1H, C=N-*H*).

¹⁹F {H} NMR spectrum (C_6D_6)

Note: Complexes **13a** and **13b** were synthesized in diethyl ether and crystalized in *n*-pentane. ¹⁹F {H} NMR (282.4 MHz, C₆D₆, 298 K, ppm): δ –108.8, 116.4 (s, F, Ar-*F*). ³¹P {H} NMR spectrum (C₆D₆)

Note: **13a** and **13b**: ³¹P NMR (121.5 MHz, C₆D₆, 298 K, ppm): δ 24.1, 23.8 (t, ²*J*_{P, P} = 36.4 Hz, 1 P, *P*(CH₃)₃), 19.9, 19.2 (d, ²*J*_{P, P} = 36.4 Hz, 2 P, *P*(CH₃)₃).

Complex 14

Note: Complex 14 was synthesized in diethyl ether and crystalized in n-pentane.

 ^{19}F {H} NMR spectrum (C₆D₆)

Note: Complex 14 was synthesized in diethyl ether and crystalized in n-pentane.

$^{31}P~\{H\}$ NMR spectrum (C_6D_6)

Note: Complex 14 was synthesized in diethyl ether and crystalized in *n*-pentane.

Complex 15

Note: Complex **15** was synthesized in diethyl ether. The signals at 3.4 ppm and 1.2 ppm are the typical signals of solvent.

³¹P {H} NMR spectrum (C_6D_6)

Note: Complex **15** was synthesized in diethyl ether. The signal at 16 ppm is the arrangement isomer of complex **15**.

Note: Complex 15 was synthesized in diethyl ether. The signals at 3.4 ppm and 1.2 ppm are the typical signals of solvent. The signals of Et_2O appear at 15 and 65 ppm.

Complex 16

IR spectrum

Note: Complex 16 was synthesized in diethyl ether.

Note: Complex 16 was synthesized in diethyl ether.

 ^{13}C {H} NMR spectrum (C₆D₆)

Note: Complex 16 was synthesized in diethyl ether.

Complex 17

¹H NMR spectrum (C_6D_6)

Note: Complex 17 was synthesized in diethyl ether.

 ^{19}F {H} NMR spectrum (C₆D₆)

Note: Complex 17 was synthesized in diethyl ether.

 ^{31}P {H} NMR spectrum (C₆D₆)

Note: Complex 17 was synthesized in diethyl ether.

¹³C {H} NMR spectrum (C_6D_6)

Note: Complex 17 was synthesized in diethyl ether.

Complex 18

Note: Complex 18 was synthesized in diethyl ether.

 ^{19}F {H} NMR spectrum (C₆D₆)

Note: Complex 18 was synthesized in diethyl ether.

 ^{31}P {H} NMR spectrum (C₆D₆)

Note: Complex 18 was synthesized in diethyl ether.

SIV. ¹H NMR spectra of Alcohol Products

СН2ОН

¹H NMR (300 MHz, CDCl₃, *δ*): 7.26–7.39 (m, *Ar*, 5H), 4.62 (s, CH₂, 2H), 2.70 (s, OH, 1H).

¹H NMR (300 MHz, CDCl₃, *δ*): 6.97–7.28 (m, *Ar*, 4H), 4.55 (s, CH₂, 2H), 2.82 (s, OH, 1H).

Г −Сн₂Он

¹H NMR (300 MHz, CDCl₃, *δ*): 7.33–6.91 (m, *Ar*, 4H), 4.61 (s, CH₂, 2H), 2.89 (s, OH, 1H).

7.19 -4.53 -2.95 4000 3500 3000 2500 2000 -1500 -1000 00 5.0 4.5 f1 (ppa) 7:00⁻⁷ -00. 8.5 8.0 7.5 6.5 6.0 4.0 3.0 0.5 0.0 9.0 5.5 3.5 2.5 2.0 1.5 1.0 9.5 CH₂OH

¹H NMR (300 MHz, CDCl₃, δ): 7.23–7.06 (m, Ar, 3H), 4.53 (s, CH₂, 2H), 2.95 (s, OH, 1H).

¹H NMR (300 MHz, CDCl₃, δ): 7.41–8.09 (m, Ar, 7H), 5.08 (s, CH₂, 2H), 2.01 (s, OH, 1H).

¹H NMR (300 MHz, CDCl₃, *δ*): 7.23–7.09 (m, *Ar*, 5H), 6.44 (d, *H*C=C, 1H), 6.18 (m, C=C*H*, 1H), 4.14 (d, *CH*₂, 2H), 2.45 (s, *OH*, 1H).

¹H NMR (300 MHz, CDCl₃, *δ*): 7.34-6.97 (m, *Ar*, 4H), 6.55 (d, *H*C=C, 1H), 6.24 (m, C=C*H*, 1H), 4.30 (dd, C*H*₂, 2H), 1.72 (s, O*H*, 1H).

¹H NMR (300 MHz, CDCl₃, *δ*): 7.30-7.13 (m, *Ar*, 5H), 6.47 (d, *H*C=C, 1H), 4.10 (s, C*H*₂, 2H), 2.71 (s, O*H*, 1H), 1.83 (s, C*H*₃, 3H)

¹H NMR (300 MHz, CDCl₃, *δ*): 7.34-7.21 (m, *Ar*, 5H), 6.52 (d, *H*C=C, 1H), 4.21 (s, *CH*₂, 2H), 2.28 (m, *CH*₂, 2H), 1.90 (s, *OH*, 1H), 1.51 (m, *CH*₂, 2H), 1.29 (m, *CH*₂, 4H), 0.86 (t, *CH*₃, 3H)

¹H NMR (300 MHz, CDCl₃, *δ*): 7.30-7.14 (m, *Ar*, 5H), 6.48 (d, *H*C=C, 1H), 4.17 (s, *CH*₂, 2H), 2.24 (m, *CH*₂, 2H), 1.43 (m, *CH*₂, 2H), 1.24 (m, *CH*₂, 6H), 0.83 (t, *CH*₃, 3H)

SV General Procedure of the Operando IR Experiment.

1 mL THF was charged into a two-necked Schlenk tube which had been connected with the Schlenk line. Through an adapter, the test probe was emerged into the solution. At the beginning, the operando IR spectrometer recorded the solvent signal for 10 min. After 5 min, 4-FC₆H₄CHO (0.17 g, 1.37 mmol) was added into the container. At the 10th minute, 1 mL THF solution of complex **15** (0.14 g, 0.27 mmol)was added into the mixture and the reaction container was heated to 55 °C. The mixture was kept stirring at this temperature for 15 min. During that period, the IR absorption (1709 cm⁻¹) for C=O bond of 4-FC₆H₄CHO maintained unchanged. At the 28th minute, the HSi(OCH₂CH₃)₃ (0.26 g, 1.6 mmol) was added. The operando IR spectra were continually recorded until the reaction was completed. The signal of C=O bond disappeared immediately and the one of C-O bond (1039 cm⁻¹) grew up.

(b)

Figure S1. Operando IR results for the cascade reaction with three components: (a) Kinetic Profiles; (b) Three-Dimensional Fourier Transform IR (3DFT-IR) Profiles.