ELECTRONIC SUPPLEMENTARY INFORMATION FOR

 Synthesis, Reactivity, Structures, and Dynamic Properties of Gyroscope Like Iron Carbonyl Complexes based upon Dibridgehead Diphosphine Cages:
Pre- vs. Post-Metathesis Substitutions as Routes to Adducts with Neutral Dipolar Fe(CO)(NO)(X) Rotors.

Georgette M. Lang,^a Dirk Skaper,^b Frank Hampel^b and John A. Gladysz^{*a}

^aDepartment of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, USA

^bInstitut für Organische Chemie and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany

EXPERIMENTAL SECTION (continued)

Additional NMR data (alternative solvents and temperatures; relevant to Figure 5).

9c-Cl (CD₂Cl₂, δ in ppm): ¹³C{¹H} (125 MHz, 25 °C; *C*H₂ peaks only) 30.8 (virtual t, ³*J*_{CP}, ⁵*J*_{CP'} = 6.8 Hz, ^{s1} PCH₂CH₂*C*H₂), 28.1 (s, *C*H₂), 27.8 (s, *C*H₂), 27.2 (s, *C*H₂), 27.0 (s, *C*H₂), 26.9 (virtual t, ¹*J*_{CP}, ³*J*_{CP'} = 12.8 Hz, ^{s1} P*C*H₂), 23.7 (s, PCH₂*C*H₂); ¹³C{¹H} (125 MHz, - 85 °C; *C*H₂ peaks only) 30.4, 29.7, 29.3 (3m, 3PCH₂CH₂*C*H₂), 27.1-23.9 (overlapping signals, *C*H₂), 23.3, 22.7, and 22.0 (3br(s), 3PCH₂*C*H₂).

9c-I (C₆D₅Cl, δ in ppm): ¹³C{¹H} (125 MHz, 100 °C; *C*H₂ peaks only) 30.5 (virtual t, ³J_{CP}, ⁵J_{CP'} = 6.5 Hz,^{s1} PCH₂CH₂*C*H₂), 28.1 (s, *C*H₂), 27.8 (s, *C*H₂), 27.6 (s, *C*H₂), 27.5 (s, *C*H₂), 23.9 (s, PCH₂*C*H₂); ¹³C{¹H} (125 MHz, -40 °C; *C*H₂ peaks only) 31.0, 30.3, 29.7 (3m, 3PCH₂CH₂*C*H₂), 28.2-26.3 (overlapping signals, *C*H₂), 24.5, 24.2, and 23.6 (3s, 3PCH₂*C*H₂).

Figure s1. Eyring plots involving rate constants for the processes that renders the $(CH_2)_{14}$ bridges of 9c-Cl and 9c-I equivalent.

Additional Synthetic Procedures and Characterization (all compounds *not* bearing the index "c" in Schemes 2-5; "c" indicates the family of complexes derived from precursors with the phosphine ligand $P((CH_2)_6CH=CH_2)_3$, including gyroscope like complexes with $P(CH_2)_{14}P$ segments).

 $trans-Fe(CO)(NO)(CI)(P((CH_2)_7CH=CH(CH_2)_7)_3P)$ (7d-CI). $trans-Fe(CO)(NO)(CI)-(P((CH_2)_7CH=CH_2)_3)_2$, (6d-Cl;^{s2} 0.101 g, 0.104 mmol), CH₂Cl₂ (55 mL; the resulting solution

is 0.0020 M in **6d-Cl**), and Grubbs' catalyst (0.015 g, 0.018 mmol, 18 mol%) were combined in a procedure analogous to that for **7c-Cl**. An identical workup gave **7d-Cl** as a red-brown waxy solid (0.032 g, 0.037 mmol, 35%, mixture of E/Z isomers).

NMR (CDCl₃, δ in ppm): ¹H (500 MHz) 5.44-5.24 (m, 6H, C**H**=), 2.31-2.11 (m, 12H, C**H**₂), 2.09-1.94 (m, 12H, C**H**₂), 1.89-1.64 (m, 12H, C**H**₂), 1.64-1.49 (m, 12H, C**H**₂), 1.50-1.18 (m, 48H, C**H**₂); ³¹P{¹H} (202 MHz) 42.1 (s, 25%), 42.0 (s, 25%), 41.9 (s, 20%), 39.7 (s, 30%).

trans-Fe(CO)(NO)(Br)(P((CH₂)₇CH=CH(CH₂)₇)₃P) (7d-Br). A Schlenk flask was charged with *trans*-Fe(CO)(NO)(Br)(P((CH₂)₇CH=CH₂)₃)₂, (6d-Br;^{s2} 0.110 g, 0.109 mmol), CH₂Cl₂ (55 mL; the resulting solution is 0.0020 M in 6d-Br), and Grubbs' catalyst (0.016 g, 0.020 mmol, 18 mol%), and fitted with a condenser. The solution was refluxed. After 16 h, additional catalyst was added (0.005 g, 0.007 mmol, 6 mol%). After another 20 h, the solvent was removed by oil pump vacuum. The residue was filtered through neutral alumina (2.5 × 2.5 cm) using 1:1 v/v hexane/CH₂Cl₂. The solvent was removed from the filtrate by oil pump vacuum to give. 7d-Br as a red-brown waxy solid (0.030 g, 0.033 mmol, 30%, mixture of *E/Z* isomers).

NMR (CDCl₃, δ in ppm): ¹H (500 MHz) 5.46-5.21 (m, 6H, C**H**=), 2.15-1.88 (m, 12H, C**H**₂), 1.84-1.52 (m, 24H, C**H**₂), 1.50-1.00 (m, 54H, C**H**₂); ³¹P{¹H} (202 MHz) 42.2 (s, 23%), 42.0 (s, 30%), 41.9 (s, 12%), 39.7 (s, 12%), 39.7 (s, 23%).

trans-Fe(CO)(NO)(Cl)(P((CH₂)₈CH=CH(CH₂)₈)₃P) (7e-Cl). A Schlenk flask was charged with *trans*-Fe(CO)(NO)(Cl)(P((CH₂)₈CH=CH₂)₃)₂, (6e-Cl;^{s2} 0.131 g, 0.125 mmol), CH₂Cl₂ (65 mL; the resulting solution is 0.0020 M in 6e-Cl), and Grubbs' catalyst (0.019 g, 0.023 mmol, 18 mol%), and fitted with a condenser. The solution was refluxed. After 12 h, additional catalyst was added (0.006 g, 0.008 mmol, 6 mol%). After another 24 h, the solvent was removed by oil pump vacuum. The residue was filtered through neutral alumina (2.5 × 2.5 cm) using 2:1 v/v hexane/CH₂Cl₂. The solvent was removed from the filtrate by oil pump vacuum to give 7e-Cl as a red-brown waxy solid (0.049 g, 0.051 mmol, 41%, mixture of *E/Z* isomers).

NMR (CDCl₃, δ in ppm): ¹H (500 MHz) 5.45-5.25 (m, 6H, C**H**=), 2.07-1.82 (m, 24H, C**H**₂), 1.80-1.64 (m, 12H, C**H**₂), 1.64-1.44 (m, 24H, C**H**₂), 1.42-1.14 (m, 42H, C**H**₂); ³¹P{¹H}

(202 MHz) 49.3 (s, 57%), 49.1 (s, 41%), 48.9 (s, 2%).

trans-Fe(CO)(NO)(Br)(P((CH₂)₈CH=CH(CH₂)₈)₃P) (7e-Br). A Schlenk flask was charged with *trans*-Fe(CO)(NO)(Br)(P((CH₂)₈CH=CH₂)₃)₂, (6e-Br;^{\$2} 0.125 g, 0.115 mmol), CH₂Cl₂ (60 mL; the resulting solution is 0.0020 M in 6e-Br), and Grubbs' catalyst (0.017 g, 0.021 mmol, 18 mol%), and fitted with a condenser. The solution was refluxed. After 48 h, the solvent was removed by oil pump vacuum. The residue was filtered through neutral alumina (2.5 × 2.5 cm) using 1:1 v/v hexane/CH₂Cl₂. The solvent was removed from the filtrate by oil pump vacuum to give 7e-Cl as a red-brown waxy solid (0.042 g, 0.041 mmol, 36%, mixture of *E/Z* isomers).

NMR (CDCl₃, δ in ppm): ¹H (500 MHz) 5.56-5.28 (m, 6H, C*H*=), 2.17-2.01 (m, 12H, C*H*₂), 1.92-1.61 (m, 24H, C*H*₂), 1.61-1.46 (m, 24H, C*H*₂), 1.44-1.10 (m, 42H, C*H*₂); ³¹P{¹H} (202 MHz) 41.8 (s, 59%), 41.7 (s, 34%), 41.6 (s, 7%).

trans-[$\mathbf{Fe}(\mathbf{CO})_2(\mathbf{NO})(\mathbf{P}((\mathbf{CH}_2)_8\mathbf{CH}=\mathbf{CH}(\mathbf{CH}_2)_8)_3\mathbf{P})]^+ \mathbf{BF}_4^- (\mathbf{8e}^+ \mathbf{BF}_4^-)$. A Schlenk flask was charged with *trans*-[$\mathbf{Fe}(\mathbf{CO})_2(\mathbf{NO})(\mathbf{P}((\mathbf{CH}_2)_8\mathbf{CH}=\mathbf{CH}_2)_3)_2$]^+ \mathbf{BF}_4^- ($\mathbf{5e}^+ \mathbf{BF}_4^-$; \mathbf{s}^2 0.300 g, 0.266 mmol), $\mathbf{CH}_2\mathbf{Cl}_2$ (175 mL, the resulting solution is 0.0015 M in $\mathbf{5e}^+ \mathbf{BF}_4^-$), Grubbs' catalyst (ca. half of 0.023 g, 0.027 mmol, 10 mol%), and fitted with a condenser. The solution was refluxed. After 24 h, the remaining catalyst was added. After another 24 h, the solvent was removed by oil pump vacuum to give crude $\mathbf{8e}^+ \mathbf{BF}_4^-$ as a red-brown oil (0.308 g, 0.296 mmol).

NMR (C₆D₆, δ in ppm): ¹H (400 MHz): 5.80-5.47 (m, 6H, C**H**=), 2.50 (m, 12H, C**H**₂), 2.07 (m, 24H, C**H**₂), 1.47-1.33 (m, 60H, C**H**₂); ³¹P{¹H} (162 MHz): 58.7 (s, 68%), 58.3 (s, 27%), 57.6 (s, 3%), 57.1 (s, 2%).

trans-[$\mathbf{Fe}(\mathbf{CO})_2(\mathbf{NO})(\mathbf{P}((\mathbf{CH}_2)_{18})_3\mathbf{P})$]⁺ \mathbf{BF}_4^- ($4\mathbf{e}^+ \mathbf{BF}_4^-$). A Fischer-Porter bottle was charged with crude $\mathbf{8e}^+ \mathbf{BF}_4^-$ (0.308 g, 0.295 mmol), $\mathbf{CIRh}(\mathbf{PPh}_3)_3$ (0.028 g, 0.030 mmol, 10 mol%), $\mathbf{CH}_2\mathbf{Cl}_2$ (30 mL), and \mathbf{H}_2 (5 atm). The solution was stirred at 23 °C. After 24 h, the solvent was removed by oil pump vacuum to give crude $4\mathbf{e}^+ \mathbf{BF}_4^-$ as a red-brown crude product (0.320 g, 0.305 mmol).

NMR (C₆D₆, δ in ppm): ¹H (400 MHz): 1.53 (m, 24H, CH₂), 1.34 (m, 84H, CH₂);

 $^{31}P\{^{1}H\}$ (162 MHz): 56.8 (overlapping peaks, 5% impurity), 55.9 (s, 80%), 55.4 (overlapping peaks, 10% impurity), 55.1 (overlapping peaks, 5% impurity).

trans- $\mathbf{Fe}(\mathbf{CO})(\mathbf{NO})(\mathbf{Br})(\mathbf{P}((\mathbf{CH}_2)_{18})_3\mathbf{P})$ (9e-Br). A Schlenk flask was charged with crude $4\mathbf{e}^+ \mathbf{BF}_4^-$ (0.320 g, 0.305 mmol) and $\mathbf{CH}_2\mathbf{Cl}_2$ (40 mL). Then $\mathbf{Bu}_4\mathbf{N}^+ \mathbf{Br}^-$ (excess) was added with stirring. After 16 h, the solvent was removed by oil pump vacuum. The residue was filtered through a plug of silica (2.5 × 2.0 cm) using $\mathbf{CH}_2\mathbf{Cl}_2$. The solvent was removed from the filtrate by oil pump vacuum to give crude **9e-Br** as a pale orange solid.

³¹P{¹H} NMR (162 MHz, C₆D₆, δ in ppm): 45.4 (s, 5% impurity), 45.0 (s, 80%, **9e-Br**), 44.8 (overlapping peaks, 15% impurity). MS:^{s3} 1011 (**9e-Br**⁺, 5%), 984 ([**9e-Br**–CO]⁺, 20%), 954 ([**9e-Br**–CO–NO]⁺, 100%), 903 ([**9e-Br**–CO–Br]⁺, 60%), 818 ([**9e-Br**–CO–NO–Br–Fe]⁺, 30%), 836 ([**9e-Br**–CO–NO–Br–Fe+O]⁺, 20%), 852 ([**9e-Br**–CO–NO–Br–Fe+2O]⁺, 5%).

REFERENCES

(s1) Hersh, W. H. J. Chem. Educ. **1997**, 74, 1485-1488. The J values given represent the apparent coupling between adjacent peaks of the triplet.

(s2) Lang, G. M.; Skaper, D.; Shima, T.; Otto, M.; Wang, L.; Gladysz, J. A. Aust. J. Chem. 2015, 68, 1342-1351.

(s3) FAB, 3-NBA, m/z (relative intensity, %); the most intense peak of the isotope envelope is given.