Supporting Information

Facile preraration of NiCo₂O₄@rGO composites for the removal of

uranium ions from aqueous solutions

Xiumei Song, ^{a,b} Lichao Tan, ^{*a,b} Xiaojun Sun,^a Huiyuan Ma,^a Lin Zhu,^a Xiaoqing Yi,^a Qiang Dong,^a Junyu Gao,^a

^a Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China. Fax: +86 451 8639 2712; Tel: +86 451 8639 2712; E-mail address: tanlcking@163.com

^b Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin

150001, China

Fig. S1 The relative distribution of Uranium (VI) species in solutions.

Table S1. Comparison of uranium (VI) sorption capacity of NiCo₂O₄@rGO with

other sorbents.

Sorbents	Q _{max} (mg U/g)	Adsorbates	Reference
GO	97.5	UO_2^{2+}	[50]
Fe ₃ O ₄ /GO	69.5	UO_2^{2+}	[51]
CoFe ₂ O ₄ /rGO	125	UO_2^{2+}	[52]
Fe ₃ O ₄ @SiO ₂ @Ni-L	129.3	UO_2^{2+}	[53]
Fe ₃ O ₄ @SiO ₂ @AO	105.5	UO_2^{2+}	[32]
NiCo ₂ O ₄ @rGO	342.4	UO_2^{2+}	Present work