Supplementary Information for:

Synthesis and Reactivity of *N*,*N*-1,4-diazabutadiene Derived Borocations

James R. Lawson, Lewis C. Wilkins, Manon André, Emma C. Richards, Mohammed N. Ali, James A. Platts and Rebecca L. Melen*

School of Chemistry, Main Building, Cardiff University, Cardiff, CF10 3AT, Cymru/Wales, U.K.

1. Experimental

1.1 General Experimental

With the exception of the starting materials, all reactions and manipulations were carried out under an atmosphere of dry, O₂-free nitrogen using standard double-manifold techniques with a rotary oil pump. A nitrogen-filled glove box (MBraun) was used to manipulate solids including the storage of starting materials, room temperature reactions, product recovery and sample preparation for analysis. All solvents (toluene, CH₂Cl₂, hexane) were dried by a solvent purification system MB SPS-800 and stored under a nitrogen atmosphere. Deuterated solvents were distilled and/or dried over molecular sieves before use. Chemicals, namely anilines and boranes, were purchased from commercial suppliers and used as received. ¹H, ¹¹B, ¹³C, ¹⁹F, ²⁷Al and ³¹P NMR spectra were recorded on a Bruker Avance II 400 spectrometer. Chemical shifts are expressed as parts per million (ppm, δ) downfield of tetramethylsilane (TMS) and are referenced to $CDCl_3$ (7.26/77.16 ppm) as internal standards. NMR spectra were referenced to CFCl₃ (¹⁹F), Al(NO₃)₃/D₂O (²⁷Al), BF₃·Et₂O/CDCl₃ (¹¹B) and H₃PO₄ (³¹P). The description of signals include: s = singlet, d = doublet, t = triplet, q = quartet, sep = septet, m = multipletand br. = broad. All coupling constants are absolute values and are expressed in Hertz (Hz). ¹³C NMR was measured as ¹H decoupled. Yields are given as isolated yields. All spectra were analysed assuming a first order approximation. IR-Spectra were measured on a Shimadzu IRAffinity-1 photospectrometer. Mass spectra were measured in house on a Waters LCT Premier/XE or a Waters GCT Premier spectrometer. Elemental analyses were performed at the London Metropolitan University.

1.2 Synthesis of starting materials.

1.2.1 General synthesis 1: synthesis of 1,4-diazabutadiene precursors (1)

Ar N N Ar In a procedure adapted from that of Yan *et al.*¹ The aniline derivative (2 equiv.) was added to a solution of 40 wt. % aqueous solution of glyoxal (1 equiv.) in

ethanol (6 ml) and stirred at ambient temperature for 1 hour, unless stated otherwise. The crude product **1** precipitated as a yellow solid which was filtered off, washed with ethanol and dried thoroughly *in vacuo* to give the pure product as a yellow-brown solid.

Synthesis of (E,E)- N^1 , N^2 -bis(2,6-diethylphenyl)ethane-1,2-diimine (1a).

Compound **1a** was synthesised according to general synthesis 1 using 2,6diethylaniline (1.5 ml, 9.1 mmol, 2 equiv.) and glyoxal (4.5 mmol, 1 equiv.). Analytical data agrees with the literature reported values. ¹ **Yield**: 381 mg, 1.2

mmol, 26%. ¹**H** NMR (400 MHz, CDCl₃, 298 K): 8.16 (s, 2H, H-C=N), 7.16 – 7.12 (m, 6H, aryl), 2.56 (q, 8H, ${}^{3}J_{HH} = 7.5$ Hz, CH₂), 1.21 (t, 12H, ${}^{3}J_{HH} = 7.5$ Hz, CH₃). ¹³C NMR (101 MHz, CDCl₃, 298 K): 163.1 (s), 149.2 (s), 132.3 (s), 126.5 (s), 124.9 (s), 24.6 (s), 14.6 (s).

Synthesis of (E,E)- N^{l} , N^{2} -dimesitylethane-1,2-diimine (**1b**).

Compound **1b** was synthesised according to general synthesis 1 using 2,4,6-trimethylaniline (1.6 ml, 11 mmol, 2 equiv.) and glyoxal (5.5 mmol, 1 equiv.). Analytical data agrees with the literature

reported values.¹ **Yield**: 501 mg, 1.7 mmol, 31%. ¹**H NMR** (400 MHz, CDCl₃, 298 K): 8.11 (s, 2H, H-C=N), 6.92 (s, 4H, aryl), 2.31 (s, 6H, *p*-Me), 2.17 (s, 12H, *o*-Me). ¹³**C NMR** (101 MHz, CDCl₃, 298 K) 163.5 (s), 147.4 (s), 134.3 (s), 129.0 (s), 126.6 (s), 20.8 (s), 18.2 (s).

Synthesis of (E,E)- N^{l} , N^{2} -bis(4-(tert-butyl)phenyl)ethane-1,2-diimine (1c).

Compound **1c** was synthesised according to general synthesis 1 using 4-tert-butylaniline (1.5 ml, 9.4 mmol, 2 equiv.) and glyoxal

(4.7 mmol, 1 equiv.). Analytical data agrees with the literature reported values.¹ **Yield**: 812 mg, 2.5 mmol, 53%. ¹**H NMR** (400 MHz, CDCl₃, 298 K) 8.47 (s, 2H, H-C=N), 7.49 (d, 4H, ${}^{3}J_{HH} = 8.7$ Hz, aryl), 7.31 (d, 4H, ${}^{3}J_{HH} = 8.7$ Hz, aryl), 1.38 (s, 18H, ${}^{7}Bu$). ¹³**C NMR** (101 MHz, CDCl₃, 298 K): 159.3 (s), 151.4 (s), 147.7 (s), 126.3 (s), 121.2 (s), 34.7 (s), 31.3 (s).

Synthesis of (E,E)- N^1 , N^2 -bis(2,6-diisopropylphenyl)ethane-1,2-diimine (**1d**).

Compound **1d** was synthesised according to general synthesis 1 using 2,6diisopropylaniline (0.94 ml, 7.4 mmol, 2 equiv.) and glyoxal (3.7 mmol, 1 equiv.). Analytical data agrees with the literature reported values.¹ **Yield**: 679 mg, 1.8 mmol, 49%. ¹**H NMR** (400 MHz, CDCl₃, 298 K): 8.10 (s, 2H,

H-C=N), 7.16-7.04 (m, 6H, aryl), 2.87 (sep, 4H, ${}^{3}J_{HH} = 6.8$ Hz, ${}^{i}Pr$ H), 1.14 (d, 24H, ${}^{3}J_{HH} = 6.8$ Hz, ${}^{i}Pr$ Me). ${}^{13}C$ NMR (101 MHz, CDCl₃, 298 K): 163.1 (s), 148.0 (s), 136.7 (s), 125.1 (s), 123.2 (s), 28.0 (s), 23.4 (s).

Synthesis of (E,E)- N^1 , N^2 -bis(4-bromo-2,6-diethylphenyl)ethane-1,2-diimine (1e).

Compound **1e** was synthesised according to general synthesis 1 using 2,6-diethyl-4-bromoaniline (1.18 ml, 7.4 mmol, 2 equiv.) and glyoxal (3.7 mmol, 1 equiv.). **Yield**: 754 mg, 1.6 mmol, 43%. ¹**H NMR** (400 MHz, CDCl₃, 298 K): 8.00 (s, 2H, H-C=N), 7.16 (s, 4H, aryl), 2.40

(q, 8H, ${}^{3}J_{HH} = 7.6$ Hz, CH₂), 1.08 (t, 12H, ${}^{3}J_{HH} = 7.5$ Hz, CH₃). 13 C NMR (101 MHz, CDCl₃, 298 K): 163.1 (s), 148.0 (s), 136.7 (s), 125.1 (s), 123.2 (s), 28.0 (s), 23.4 (s). MP: 104-106 °C. IR ν_{max} (cm⁻¹): 2963, 2936, 2876, 1618, 1609, 1572, 1454, 1441, 1408, 1371, 1327, 1304, 1271, 1233, 1173, 1022, 964, 872, 860, 841, 800, 779, 756, 702, 615, 586, 552. HRMS (ES⁺) [M+H]⁺ [C₂₂H₂₇N₂Br₂]⁺: calculated: 477.0541 found: 477.0527. EA (%) for C₂₂H₂₆N₂Br₂: Calculated C 55.25, H 5.48, N 5.86, Found C 55.14, H 5.36, N 5.95.

Synthesis of (E,E)- N^1 , N^2 -bis(2,4,6-tri-tert-butylphenyl)ethane-1,2-diimine (**1f**).

Compound **1f** was synthesised according to general synthesis 1, but was heated to reflux for 72 hours using 2,4,6-tri-tert-butylaniline (0.48 mg, 1.85 mmol, 2 equiv.) and glyoxal (0.92 mmol, 1 equiv.). Analytical data agrees with the literature reported values.¹ **Yield**:

117 mg, 0.2 mmol, 23%. ¹H NMR (400 MHz, CDCl₃, 298 K): 8.16 (s, 2H, H-C=N), 7.38 (s, 4H, aryl), 1.36 (s, 36H, *o*^{*t*}Bu), 1.35 (s, 18H, *p*^{*t*}Bu). ¹³C NMR (101 MHz, CDCl₃, 298 K): 163.4 (s), 149.3 (s), 145.0 (s), 137.4 (s), 121.9 (s), 36.0 (s), 34.8 (s), 31.5 (s).

Synthesis of (E,E)- N^{l} , N^{2} -bis(4-methoxyphenyl)ethane-1,2-diimine (**1g**).

Compound **1c** was synthesised according to general synthesis 1 using 4-methoxyaniline (1.5 g, 12 mmol, 2 equiv.) and glyoxal (6 mmol, 1 equiv.). Analytical data agrees with the literature reported values.¹ **Yield**: 1.25 g, 4.7 mmol, 76%. ¹**H NMR** (400 MHz, CDCl₃, 298 K): 8.43 (s, 2H, H-C=N), 7.35 (d, ${}^{3}J_{HH} = 8.5$ Hz, 4H, aryl), 6.97 (d, ${}^{3}J_{HH} = 8.5$ Hz, 4H, aryl), 3.86 (s, 6H, OMe). ¹³**C NMR** (101 MHz, CDCl₃, 298 K): 159.8 (s), 157.6 (s), 142.9 (s), 123.1 (s), 114.6 (s), 55.6 (s).

1.3 Synthesis of products

1.3.1 General synthesis 2: synthesis of borenium cations (3)

Diazabutadiene 1 (0.1 mmol, 1 equiv.) was dissolved in CDCl₃ (*ca.* 0.6 ml), to which
PhBCl₂ (16 mg, 0.1 mmol, 1 equiv.) was added. Formation of the intermediate 2 was complete within 10 minutes, as monitored by *in situ* multinuclear NMR spectroscopy.
Upon completion, AlCl₃ (13 mg, 0.1 mmol, 1 equiv.) was added to give a dark

red/brown coloured solution. The solvent was reduced and layered with hexane and stored at -40 °C to yield either a solid precipitate or a crop of red/brown coloured crystals suitable for X-ray diffraction. The solvent was then removed and the crystals were subsequently washed with cold hexane $(3 \times 2 \text{ ml})$ then dried *in vacuo* to give the pure product **3**.

1.3.2 General synthesis 3: synthesis of boronium cations (4)

Diazabutadiene **1** (0.1 mmol, 1 equiv.) was dissolved in $CDCl_3$ (*ca*. 0.6 ml), to which BCl_3 (0.2 ml, 1M in DCM, 0.2 mmol, 2 equiv.) was added, instantly forming a dark red solution. Monitoring by *in situ* multinuclear NMR spectroscopy showed that the reaction was complete within 10 minutes. Upon completion, $AlCl_3$ (13 mg, 0.1 mmol,

1 equiv.) was added to give a deep red coloured solution. The solvent was reduced and layered with hexane and stored at -40 °C to yield a crop of red coloured crystals suitable for X-ray diffraction. The remaining solvent was removed and the crystals were subsequently washed with cold hexane $(3 \times 2 \text{ ml})$ then dried *in vacuo* to give the pure product.

Synthesis of 4-chloro-1,3-bis(2,6-diethylphenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3a).

Compound **3a** was synthesised using general synthesis 2 using diazabutadiene **1a** (32 mg, 0.1 mmol). Yield: 56 mg, 0.09 mmol, 91%. After multiple EA attempts satisfactory results could not be obtained. ¹H NMR (400 MHz, CDCl₃, 298 K): 7.67 (t, ${}^{3}J_{HH} = 7.7$ Hz, 1H, *p*-aryl), 7.45 (d, ${}^{3}J_{HH} = 7.6$ Hz, 2H), 7.40 (t,

 ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}, 2\text{H}$, 7.32 (d, ${}^{3}J_{\text{HH}} = 7.7 \text{ Hz}, 2\text{H}$), 7.10 (t, ${}^{3}J_{\text{HH}} = 7.9 \text{ Hz}, 2\text{H}$), 6.83 (d, ${}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2\text{H}$), 5.60 (s, 2H, N-CH₂), 2.74-2.36 (m, 8H, CH₂), 1.23-1.17 (m, 12H, CH₃). ¹¹**B** NMR (128 MHz, CDCl₃, 298 K): 34.4 (s). ¹³**C** NMR (101 MHz, CDCl₃, 298 K): 140.1 (s), 137.2 (s), 134.4 (s), 133.7 (s), 133.6 (s), 133.2 (s), 132.2 (s), 129.9 (s), 128.8 (s), 128.1 (s), 127.5 (s), 65.8 (s), 24.6 (s), 24.2 (s), 14.3 (s), 13.7 (s). ²⁷**Al** NMR (104 MHz, CDCl₃, 298 K): 103.92 (s).

Synthesis of 4-chloro-1,3-bis(2,4,6-trimethylphenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3b).

Compound **3b** was synthesised using general synthesis 2 using diazabutadiene **1b** (30 mg, 0.1 mmol). Yield: 55 mg, 0.1 mmol, 95%. ¹**H NMR** (400 MHz, CDCl₃, 298 K): 7.44 (t, ${}^{3}J_{HH} = 7.5$ Hz, 1H, *p*-aryl), 7.18-7.15 (m, 6H), 6.91 (d, ${}^{3}J_{HH}$ = 7.1 Hz, 2H, *o*-aryl), 5.54 (s, 2H, N-CH₂), 2.46 (s, 3H, *p*-

Me), 2.36 (s, 3H, *p*-Me), 2.25 (s, 6H, *o*-Me), 2.20 (s, 6H, *o*-Me). ¹¹**B** NMR (128 MHz, CDCl₃, 298 K): 33.9 (br s). ¹³C NMR (101 MHz, CDCl₃, 298 K): 191.0 (s), 142.3 (s). 139.3 (s), 134.1 (s), 133.5 (s), 133.1 (s), 132.8 (s), 131.6 (s), 131.4 (s), 130.9 (s), 130.5 (s), 128,9 (s), 64.8 (s), 21.3 (s), 21.1 (s), 18.2 (s), 18.0 (s). ²⁷Al NMR (104 MHz, CDCl₃, 298 K): 103.96 (s).

Synthesis of 4-chloro-1,3-bis(2,6-diisopropylphenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3d).

Compound **3d** was synthesised using general synthesis 2 using diazabutadiene **1d** (33 mg, 0.1 mmol). Yield: 62 mg, 0.09 mmol, 92%. **¹H NMR** (400 MHz, CDCl₃, 298 K): 7.73 (t, ${}^{3}J_{HH} = 7.9$ Hz, 1H, *p*-aryl), 7.53-7.48 (m, 3H), 7.38 (t, ${}^{3}J_{HH} = 7.6$ Hz, 1H, *p*-aryl), 7.33 (d, ${}^{3}J_{HH} = 7.8$ Hz, 2H, aryl), 7.08 (t, ${}^{3}J_{HH} = 7.8$ Hz, 2H, *m*-aryl), 6.78 (d, ${}^{3}J_{HH} = 7.3$ Hz,

2H, *o*-aryl), 5.64 (s, 2H, N-CH₂), 2.94 (sep, ${}^{3}J_{\text{HH}} = 6.7$ Hz, 2H, ${}^{1}\text{Pr}$ H), 2.61 (sep, ${}^{3}J_{\text{HH}} = 6.7$ Hz, 2H, ${}^{1}\text{Pr}$ H), 1.36 (2d (overlapped), ${}^{3}J_{\text{HH}} = 6.5$ Hz, 12H, ${}^{1}\text{Pr}$ Me), 0.98 (d, ${}^{3}J_{\text{HH}} = 6.7$ Hz, 12H, ${}^{1}\text{Pr}$ Me). ${}^{11}\text{B}$ NMR (128 MHz, CDCl₃, 298 K): 31.8 (s). ${}^{13}\text{C}$ NMR (101 MHz, CDCl₃, 298 K): 190.7 (s), 145.2 (s), 142.3 (s), 134.6 (s), 133.7 (s), 132.7 (s), 131.4 (s), 130.3 (s), 128.5 (s), 126.1 (s), 125.4 (s), 66.9 (s), 30.1 (s), 29.0 (s), 25.2 (s), 24.3 (s), 23.9 (s), 23.3 (s). ${}^{27}\text{Al}$ NMR (104 MHz, CDCl₃, 298 K): 103.97 (s). EA (%) for C₃₂H₄₁N₂AlBCl₅: Calculated C 57.47, H 6.18, N 4.19, Found C 57.63, H 6.33, 4.27.

Synthesis of 4-chloro-1,3-bis(2,6-diethyl-4-bromophenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3e).

Compound **3e** was synthesised using general synthesis 2 using diazabutadiene **1e** (48 mg, 0.1 mmol). Yield: 64 mg, 0.08 mmol, 83%. ¹H NMR (400 MHz, CDCl₃, 298 K): 7.61 (s, 2H, *m*-aryl), 7.48 (t, 1H, *p*-aryl), 7.45 (s, 2H, *m*-aryl), 7.20 (t, 2H, *m*-aryl), 6.86 (d, 2H, *o*-aryl), 5.52 (s, 2H, N-CH₂), 2.68-2.32

(m, 8H, CH₂), 1.22-1.17 (m, 12H, CH₃). ¹¹**B** NMR (128 MHz, CDCl₃, 298 K): 33.4 (s). ¹³C NMR (101 MHz, CDCl₃, 298 K): 191.6 (s), 142.1 (s), 139.2 (s), 133.5 (s), 131.4 (s), 130.7 (s), 129.2 (s), 126.9 (s), 124.3 (s), 65.6 (s), 24.5 (s), 24.1 (s), 14.0 (s), 13.4 (s). ²⁷Al NMR (104 MHz, CDCl₃, 298 K): 103.82

(s). **EA** (%) for C₂₈H₃₁N₂AlBCl₅Br₂: Calculated C 43.65, H 4.06, N 3.64, Found C 43.57, H 4.14, N 3.72.

Synthesis of 2,2-dichloro-1,3-bis(2,6-diethylphenyl)-2H-1,3l4,2l4-diazaborol-1-ium (4a).

Compound **4a** was synthesised using general synthesis 3 using diazabutadiene **1a** (32 mg, 0.1 mmol). Yield: 56 mg, 0.1 mmol, 98%. ¹H NMR (400 MHz, CDCl₃, 298 K): 9.53 (s, 2H, N=C–H), 7.52 (t, 2H, ${}^{3}J_{HH} =$ 7.7 Hz, *p*-aryl), 7.38 (d, 4H, ${}^{3}J_{HH} =$ 7.7 Hz, *m*-aryl), 2.79-2.62 (m, 8H, CH₂),

1.31 (t, 12H, ${}^{3}J_{HH} = 7.6$ Hz, CH₃). ¹¹**B** NMR (128 MHz, CDCl₃, 298 K): 10.6 (s). ¹³**C** NMR (101 MHz, CDCl₃, 298 K): 165.0 (s), 138.2 (s), 133.7 (s), 131.2 (s), 127.4 (s), 24.9 (s), 15.2 (s). ²⁷Al NMR (104 MHz, CDCl₃, 298 K): 103.98 (s).

Synthesis of 2,2-dichloro-1,3-dimesityl-2H-1,3l4,2l4-diazaborol-1-ium (4b).

Compound **4b** was synthesised using General synthesis 3 using diazabutadiene **1b** (30 mg, 0.1 mmol). Yield: 53 mg, 0.1 mmol, 98%. **¹H NMR** (400 MHz, CDCl₃, 298 K): 9.48 (s, 2H, N=C–H), 7.08 (s, 4H, Ar-H), 2.41 (s, 12H, *o*-Me), 2.37 (s, 6H, *p*-Me). ¹¹B NMR (128

MHz, CDCl₃, 298 K): 10.6 (br. s). ¹³C NMR (101 MHz, CDCl₃, 298 K): 165.2 (s), 141.2 (s), 133.2 (s), 132.2 (s), 130.9 (s), 20.8 (s), 19.4 (s). ²⁷Al NMR (104 MHz, CDCl₃, 298 K): 103.81 (s).

Synthesis of 2,2-dichloro-1,3-bis(2,6-diethylphenyl)-2H-1,3l4,2l4-diazaborol-1-ium (4e).

Compound **4d** was synthesised using general synthesis 3 using diazabutadiene **1e** (48 mg, 0.1 mmol). Yield: 46 mg, 0.06 mmol, 63%. ¹H NMR (400 MHz, CDCl₃, 298 K): 9.43 (s, 2H), 7.51 (s, 4H), 2.75-2.55 (m, 8H, CH₂), 1.31 (t, 12H, ${}^{3}J_{HH} = 7.4$ Hz, CH₃). ¹¹B NMR (128 MHz, CDCl₃, 298 K): 10.5. ¹³C NMR (101 MHz,

CDCl₃, 298 K): 165.0 (s), 140.6 (s), 132.4 (s), 130.8 (s), 126.2 (s), 25.1 (s), 15.4 (s). ²⁷Al NMR (104 MHz, CDCl₃, 298 K): 103.81 (s).

2. Experimental: NMR spectra

2.1 NMR spectra of starting materials.

S1 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of (*E*,*E*)-*N*¹,*N*²-*bis*(2,6-*diethylphenyl*)*ethane*-1,2-*diimine* (1a).

S2 ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of (E,E)- N^1 , N^2 -bis(2,6-diethylphenyl)ethane-1,2-diimine (1a).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S3 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of (*E*,*E*)-*N*¹,*N*²-dimesitylethane-1,2-diimine (1b).

S6¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum (*E*,*E*)-*N*¹,*N*²-*bis*(4-(*tert-butyl*)*phenyl*)*ethane-1*,2-*diimine* (*1c*).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S8¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of (*E*,*E*)-*N*¹,*N*²-*bis*(2,6-*diisopropylphenyl*)*ethane*-1,2-*diimine* (1d).

S9 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of (E,E)- N^1 , N^2 -bis(4-bromo-2,6-diethylphenyl)ethane-1,2-diimine (1e).

S10 ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of (E,E)- N^1 , N^2 -bis(4-bromo-2,6-diethylphenyl)ethane-1,2-diimine (1e).

S11 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of (E, E)- N^{l} , N^{2} -bis(2, 4, 6-tri-tert-butylphenyl) ethane-1, 2-diimine (1f).

S12 ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of (*E*,*E*)-*N*¹,*N*²-*bis*(2,4,6-*tri-tert-butylphenyl*)*ethane-1,2-diimine* (*1f*).

S13 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of (E,E)- N^1 , N^2 -bis(4-methoxyphenyl)ethane-1,2-diimine (**1g**).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

2.2 NMR spectra of products.

S15¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,6-diethylphenyl)-2-phenyl-2,3-dihydro-1H-1,3,2-diazaborole (2a).

S16¹¹B NMR (128 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,6-diethylphenyl)-2-phenyl-2,3-dihydro-1H-1,3,2-diazaborole (2a).

S17¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,6-diethylphenyl)-2-phenyl-2,3-dihydro-1H-1,3,2-diazaborole (2a).

S19¹¹B NMR (128 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,4,6-trimethylphenyl)-2-phenyl-2,3-dihydro-1H-1,3,2-diazaborole (2b).

S20¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,4,6-trimethylphenyl)-2-phenyl-2,3-dihydro-1H-1,3,2-diazaborole (2b).

С

S21¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,6-diethylphenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3a).

S23 ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,6-diethylphenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (**3a**).

190	170	150	130	110	90	70	50	30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190
									f1 (ppm)									

S26¹¹B NMR (128 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,4,6-trimethylphenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3b).

— 33.87

S27¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,4,6-trimethylphenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3b).

S28²⁷Al NMR (104 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,4,6-trimethylphenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3b).

S29¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,6-diisopropylphenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3d).

S30¹¹B NMR (128 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,6-diisopropylphenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3d).

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

S32 ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,6-diisopropylphenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3d).

S33 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,6-diethyl-4-bromophenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3e).

S34 ¹¹B NMR (128 MHz, CDCl₃, 298 K) spectrum of *4-chloro-1,3-bis*(2,6-diethyl-4-bromophenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3e).

S35 ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,6-diethyl-4-bromophenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3e).

S36 ²⁷Al NMR (104 MHz, CDCl₃, 298 K) spectrum of 4-chloro-1,3-bis(2,6-diethyl-4-bromophenyl)-2-phenyl-2,5-dihydro-1H-1,3,2-diazaborol-3-ium tetrachloroaluminate (3e).

S37 in situ ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 2,2-dichloro-1,3-bis(2,6-diethylphenyl)-2H-1,3l4,2l4-diazaborol-1-ium (4a).

S38 ¹¹B NMR (128 MHz, CDCl₃, 298 K) spectrum of 2,2-dichloro-1,3-bis(2,6-diethylphenyl)-2H-1,3l4,2l4-diazaborol-1-ium (4a).

S39 ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of 2,2-dichloro-1,3-bis(2,6-diethylphenyl)-2H-1,3l4,2l4-diazaborol-1-ium (4a).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S41 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 2,2-dichloro-1,3-dimesityl-2H-1,3l4,2l4-diazaborol-1-ium (4b).

S42¹¹B NMR (128 MHz, CDCl₃, 298 K) spectrum of 2,2-dichloro-1,3-dimesityl-2H-1,3l4,2l4-diazaborol-1-ium (4b).

10.66

180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 f1 (ppm) S43 ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of 2,2-dichloro-1,3-dimesityl-2H-1,3l4,2l4-diazaborol-1-ium (4b).

S44²⁷Al NMR (104 MHz, CDCl₃, 298 K) spectrum of 2,2-dichloro-1,3-dimesityl-2H-1,3l4,2l4-diazaborol-1-ium (4b).

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

S45 ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of 2,2-dichloro-1,3-bis(2,6-diethylphenyl)-2H-1,3l4,2l4-diazaborol-1-ium (4e).

S46¹¹B NMR (128 MHz, CDCl₃, 298 K) spectrum of 2,2-dichloro-1,3-bis(2,6-diethylphenyl)-2H-1,3l4,2l4-diazaborol-1-ium (4e).

S47 ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of 2,2-dichloro-1,3-bis(2,6-diethylphenyl)-2H-1,3l4,2l4-diazaborol-1-ium (4e).

S48²⁷Al NMR (104 MHz, CDCl₃, 298 K) spectrum of 2,2-dichloro-1,3-bis(2,6-diethylphenyl)-2H-1,3l4,2l4-diazaborol-1-ium (4e).

1 ' 10 -10 f1 (ppm) 30 190 170 150 130 110 90 70 50 -30 -50 -70 -90 -110 -130 -150 -170 -190 S49 in situ ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of the reaction of **3a** with tri(*o*-tolyl)phosphine.

S50 in situ ¹¹B NMR (400 MHz, CDCl₃, 298 K) spectrum of the reaction of **3a** with tri(*o*-tolyl)phosphine.

S51 in situ ³¹P NMR (162 MHz, CDCl₃, 298 K) spectrum of the reaction of **3a** with tri(*o*-tolyl)phosphine.

S52 in situ ³¹P{¹H} NMR (162 MHz, CDCl₃, 298 K) spectrum of the reaction of **3a** with tri(*o*-tolyl)phosphine.

S53 in situ ²⁷Al NMR (104 MHz, CDCl₃, 298 K) spectrum of the reaction of **3a** with tri(*o*-tolyl)phosphine.

170 140 110 80 60 40 20 0 -30 -60 -90 -120 -160 f1 (ppm)

S54 in situ overlay ¹¹B NMR (128 MHz, CDCl₃, 298 K) spectrum of the reaction of **1b** with 1 equiv. BCl₃ (red) and 2 equiv. BCl₃ (blue).

S57 ²⁷Al NMR (104 MHz, CDCl₃, 298 K) spectrum of **3b** + Ph₃PO

S61 ²⁷Al NMR (104 MHz, CDCl₃, 298 K) spectrum of **3e** + Ph₃PO

3. Crystallographic studies.

3.1 Thermal ellipsoid plots

S65 Thermal ellipsoid of 3a (ellipsoid probability 50 %). C: black, N: blue, B: yellow-green, H: white, Al: grey, Cl: aquamarine.

S66 Thermal ellipsoid of **3d** (ellipsoid probability 50 %). C: black, N: blue, B: yellow-green, H: white, Al: grey, Cl: aquamarine.

S67 Thermal ellipsoid of **4a** (ellipsoid probability 50 %). C: black, N: blue, B: yellow-green, H: white, Al: grey, Cl: aquamarine.

3.2 Refinement data

Single crystals of **3a** and **3d** were grown under an inert atmosphere. Crystallographic studies were undertaken of a single crystal mounted in paratone and studied on an Agilent SuperNova Dual Atlas three-circle diffractometer using Cu-K α or Mo-K α radiation and a CCD detector. Measurements were carried out at 150(2) K or 100(2) K (**3d**) with temperatures maintained using an Oxford cryostream unless otherwise stated. Data were collected and integrated and data corrected for absorption using a numerical absorption correction based on gaussian integration over a multifaceted crystal model within CrysAlisPro.² The structures were solved by direct methods and refined against F^2 within SHELXL-2013.³ A summary of crystallographic data are available as ESI and the structures deposited with the Cambridge Structural Database (CCDC deposition numbers 1499077 (**3a**), 1499078 (**3d**), 1499079 (**4a**)). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Compound	3 a	3d
Empirical Formula	C28H33AlBCl5N2	C32H41AlBCl5N2
Crystal System	Triclinic	Orthorhombic
Space Group	P-1	<i>P2</i> ₁ <i>2</i> ₁ <i>2</i>
a/Å	9.7882(4)	18.9942(4)
b/Å	11.2460(5)	18.2174(4)
c/Å	14.7984(6)	10.5733(2)
α/º	88.786(4)	90
β/º	79.559(4)	90
γ/ ^o	74.904(4)	90
V/Å ³	1546.35(12)	3658.63(15)
Ζ	2	4
T/K	150(2)	100(2)
$D_c/\text{g.cm}^{-3}$	1.316	1.214
Crystal size/mm	0.354 x 0.252 x 0.236	0.070 x 0.050 x 0.040
Total data	12778	41108
Unique data	7336	6461
R _{int}	0.0373	0.0573
$R_1[F^2>2 \sigma(F^2)]$	0.0451	0.0350
wR2 (all data)	0.1168	0.0843
GoF	1.006	1.023
$\rho_{min}/\rho_{max}/e{\rm \AA}^{-3}$	-0.631/0.656	-0300/0.333
CCDC code	1499077	1499078

Table S1. Crystallographic data for **3a** and **3d**.

4. Computational studies.

All geometry optimisations were undertaken using the B3LYP functional⁴ and 6-31G* basis set⁵ within Gaussian 09.⁶ Subsequent single point calculations were undertaken using the B3LYP functional and larger 6-311G* basis set. In addition, partial charges were determined using an NBO analysis.⁷

Figure S68. Overlay of geometry optimised structure and experimental solid-state crystal structure of 3a (left) and 4a (right).

Figure S69. Key NBO charge distributions for 3a (left) and 4a (right)

References

- 1. K. Yan, C. N. Lok, K. Bierla and C. M. Che, *Chem. Commun.*, 2010, **46**, 7691.
- 2. CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET).
- 3. SHELXL-2013, G. M. Sheldrick, University of Göttingen, Germany (2013).
- 4. A. D. Becke, *Phys. Rev.* A, 1988, **38**, 3098; C. Lee, W. Yang, R. G. Parr. *Phys. Rev. B*, 1988, **37**, 785.
- 5. R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724
- Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.

Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

 NBO 6.0. J. K. Glendening, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold. (Theoretical Chemistry Institute, University of Wisconsin, Madison, Wi, 2013); <u>Http://Nbo6.Chem.Wisc.Edu/</u>.