## Supporting Information

## Terminal solvent effects on the anisotropy barriers of Dy<sub>2</sub> systems

Y. Jiang,<sup>*a*</sup> G. Brunet,<sup>*a*</sup> R. J. Holmberg, <sup>*a*</sup> F. Habib, <sup>*a*</sup> I. Korobkov, <sup>*a*</sup> and M. Murugesu<sup>\**a*</sup>

<sup>a</sup> Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, ON, Canada K1N 6N5. E-mail: m.murugesu@uottawa.ca; Tel: +1 (613) 562 5800 ext. 2733

|                                                 | 1                              | 2                            | 3                                 |
|-------------------------------------------------|--------------------------------|------------------------------|-----------------------------------|
| formula                                         | $C_{34}H_{36}Cl_2Dy_2N_8O_8\\$ | $C_{34}H_{38}Cl_2Dy_2N_6O_8$ | $C_{30}H_{33}Cl_2Dy_2N_6O_{10}\\$ |
| fw                                              | 1080.61                        | 1052.59                      | 1033.52                           |
| <i>T</i> /K                                     | 200(2)                         | 200(2)                       | 200(2)                            |
| crystal system                                  | Monoclinic                     | Monoclinic                   | Monoclinic                        |
| space group                                     | $P2_1/n$                       | $P2_1/n$                     | $P2_{1}/c$                        |
| a/Å                                             | 9.2840(5)                      | 9.2698(2)                    | 9.4224(3)                         |
| <i>b</i> /Å                                     | 12.1401(6)                     | 12.1313(3)                   | 11.7141(4)                        |
| $c/{ m \AA}$                                    | 17.5090(8)                     | 16.9364(4)                   | 30.8652(10)                       |
| a/deg                                           | 90                             | 90                           | 90                                |
| $\beta$ /deg                                    | 98.4461(11)                    | 101.2440(10)                 | 96.162(2)                         |
| γ/deg                                           | 90                             | 90                           | 90                                |
| <i>Vol/</i> Å <sup>3</sup>                      | 1952.01(17)                    | 1868.02(8)                   | 3387.06(19)                       |
| Ζ                                               | 2                              | 2                            | 4                                 |
| $DC/Mg m^{-3}$                                  | 1.839                          | 1.871                        | 2.027                             |
| $\mu/\mathrm{mm}^{-1}$                          | 3.994                          | 4.170                        | 4.602                             |
| Reflns collected                                | 27137                          | 11000                        | 5747                              |
| GOF                                             | 1.017                          | 1.093                        | 1.244                             |
| <i>R1, wR</i> 2 ( > $2\sigma(I)$ ) <sup>a</sup> | 0.0267, 0.0648                 | 0.0413, 0.0896               | 0.0897, 0.1836                    |
| R1, wR2 (all data)                              | 0.0388, 0.0716                 | 0.0319, 0.0853               | 0.1031, 0.1883                    |

 Table S1 Crystallographic data for dinuclear complexes 1–3.

 ${}^{a}R = R_{I} = ||F_{o}| - |F_{c}||/\Sigma|F_{o}|; wR_{2} = \{ [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}]/[w(F_{o}^{2})^{2}] \}^{1/2}; w= 1/[\sigma^{2}(F_{o}^{2}) + (ap)^{2} + bp], where p = [max(F_{o}^{2}, 0) + 2Fc^{2}]/3.$ 

|               | 1         | 2         |
|---------------|-----------|-----------|
| Dy1-Dy1a/Å    | 3.8937(3) | 3.8538(3) |
| Dy1-O3/Å      | 2.337(2)  | 2.322(4)  |
| Dy1-O3a/Å     | 2.316(2)  | 2.317(4)  |
| Dy1-O4/Å      | 2.288(4)  | 2.381(3)  |
| Dy1-Cl1/Å     | 2.613(1)  | 2.633(1)  |
| Dy1-O3-Dy1a/° | 113.60(9) | 112.4(1)  |
| O4-Dy1-Cl1/°  | 176.2(1)  | 163.41(9) |
| -             |           |           |

Table S2 Selected bond distances (Å) and angles (°) for complexes 1 and 2.



**Fig. S1** Illustration of the packing arrangements of complexes **1** (left) and **2** (right). The shortest Dy-Dy distance for **1**: green-purple-9.42 Å, purple-blue-9.89 Å; for **4**: green-pink-9.31 Å, pink-blue-9.38 Å.

|               | 3        |
|---------------|----------|
| Dy1-Dy2/Å     | 3.954(1) |
| Dy1-O3/Å      | 2.30(1)  |
| Dy1-O6/Å      | 2.32(1)  |
| Dy2-O3/Å      | 2.44(1)  |
| Dy2-O6/Å      | 2.40(1)  |
| Dy2-O10/Å     | 2.45(1)  |
| Dy2-O7/Å      | 2.48(1)  |
| Dy2-O8/Å      | 2.50(1)  |
| Dy2-O9/Å      | 2.44(1)  |
| Dy1-Cl1/Å     | 2.662(5) |
| Dy1-Cl2/Å     | 2.665(5) |
| C9-N2/Å       | 1.30(2)  |
| C9-O3/Å       | 1.30(2)  |
| C23-O6/Å      | 1.28(2)  |
| C23-N5/Å      | 1.31(2)  |
| Cl1-O9/Å      | 3.12(1)  |
| Cl2-O10/Å     | 3.17(1)  |
| Dy1-O3-Dy2/°  | 113.2(5) |
| Dy1-O6-Dy2/°  | 113.8(4) |
| Cl1-Dy1-Cl2/° | 169.3(1) |

Table S3 Selected bond distances (Å) and angles (°) for complex 3.

| SHAPE code | Point group | Description                        | SHAPE constant |
|------------|-------------|------------------------------------|----------------|
| EP-9       | $D_{9h}$    | Enneagon                           | 34.909         |
| OPY-9      | $C_{8v}$    | Octagonal pyramid                  | 23.177         |
| HBPY-9     | $D_{7h}$    | Heptagonal bipyramid               | 18.619         |
| JTC-9      | $C_{3v}$    | Johnson triangular cupola J3       | 13.944         |
| JCCU-9     | $C_{4v}$    | Capped cube J8                     | 10.742         |
| CCU-9      | $C_{4v}$    | Spherical-relaxed capped cube      | 9.471          |
| JCSAPR-9   | $C_{4v}$    | Capped square antiprism J10        | 2.002          |
| CSAPR-9    | $C_{4v}$    | Spherical capped square antiprism  | 1.221          |
| JTCTPR-9   | $D_{3h}$    | Tricapped trigonal prism J51       | 2.571          |
| TCTPR-9    | $D_{3h}$    | Spherical tricapped trigonal prism | 1.550          |
| JTDIC-9    | $C_{3v}$    | Tridiminished icosahedron J63      | 12.072         |
| HH-9       | $C_{2v}$    | Hula-hoop                          | 9.515          |
| MFF-9      | $C_s$       | Muffin                             | 1.325          |

Table S4 SHAPE constants of  $Dy_2$  for complex 3.



**Fig. S2** Field dependence of the magnetization M at 1.8, 3, 5, and 7 K for complex 1 plotted as M vs. H (left) and M vs.  $HT^{-1}$  (right).



**Fig S3** Field dependence of the magnetization M at 1.8, 3, 5, and 7 K for complex **2** plotted as M vs. H (left) and M vs.  $HT^{-1}$  (right).



**Fig S4** Field dependence of the magnetization M at 2, 3, 5, and 7 K for complex **3** plotted as M vs. H (left) and M vs.  $HT^{-1}$  (right).



Fig. S5 Cole-Cole plot using the ac susceptibility data for complex 1 (left) and the obtained  $\alpha$  values from the fit using a generalized Debye model plotted as  $\alpha$  vs. T (right).



Fig. S6 Cole-Cole plot using the ac susceptibility data for complex 2 (left) and the obtained  $\alpha$  values from the fit using a generalized Debye model plotted as  $\alpha$  vs. T (right).