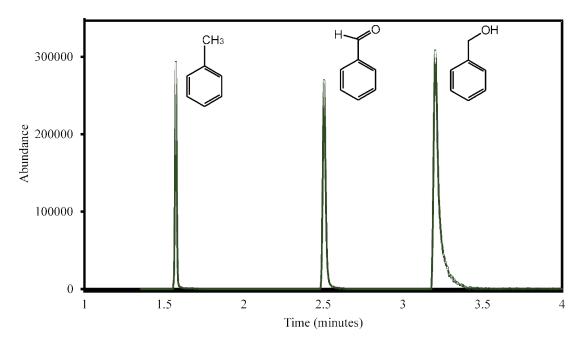
Supplementary Information for:

Copper catalysed aerobic oxidation of benzylic alcohols in an imidazole containing N_4 ligand framework

Rahul Jain,^a Tony J. Gibson,^a Mark S. Mashuta,^a Robert M. Buchanan,^a and Craig A. Grapperhaus*^a

^aDepartment of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY, USA 40292. *e-mail: grapperhaus@louisville.edu

Contents


Experimental method and Experimental Procedure for GC-MS analysis	S2
Figure S1. Gas Chromatogram of a reaction mixture	S2
Figure S2. Electronic spectrum of $[L_3$ -Cu] ²⁺ with the successive additions of perchloric acid in acetonitrile	
Figure S3. FT-IR spectrum of [L ₃ -Cu][(ClO ₄) ₂]	S4
Figure S4. Experimental and Simulated EPR spectrum of[L ₃ -Cu][(ClO ₄) ₂]	S5
Table 4. Selected hydrogen-bonding interactions in $[L_3$ -Cu][(ClO ₄) ₂] and $[HL_3$ -Cu][(ClO ₄) ₃]	S6

Experimental Methods

IR spectra were measured with a Thermo Nicolet Avatar 360 spectrometer at 4 cm⁻¹resolution. Electronic absorption spectra were obtained with an Agilent 8453 diode array spectrometer utilizing a custom designed cell with 1 cm path length quartz sample compartment. The GC-MS instrument was obtained from Agilent Technologies augmented with 7820A GC system and 5975 series MSD using Helium as a carrier gas at a flow rate of 1mL/min. The oven temperature was set to 100°C. The column used was poly (5% diphenyl, 95% dimethylsiloxane) with length 30m, 250µm inner diameter and 0.25µm thickness.

Experimental procedure

0.5 ml (5 mmol) benzyl alcohol was added to an empty vial containing a small stir bar. 10 ml acetonitrile was added to the vial. 127 mg (5 mol% of alcohol) of $[L_3-Cu]^{2+}$ was added to the vial followed by 0.039 g TEMPO (5 mol % of alcohol) and 20 µL NMI (5mol% of alcohol) was added. 0.08 M toluene was added to the solution as an internal standard. The reaction mixture which is blue in color was allowed to stir open to air for 4 hours. After 4 hours, 10 µL of analyte was taken from now dark green reaction mixture and was diluted to 1.5 ml and was then subjected to GC-MS analysis to determine the yield and TON.

Figure S1. Gas Chromatogram of the reaction mixture showing toluene (internal standard), benzaldehyde (product) and benzyl alcohol (substrate).

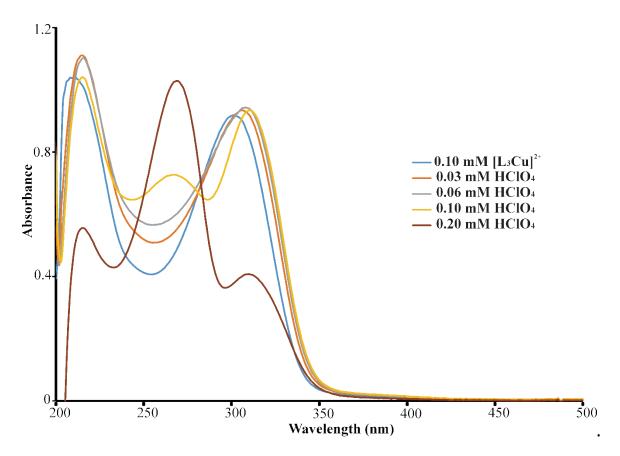


Figure S2. Electronic spectrum of $[L_3-Cu]^{2+}$ with the successive additions of perchloric acid in acetonitrile

[L ₃ Cu] ²⁺ + H ⁺	≥ [HL3Cu(NCCH3)2] ³⁺ ←	$\stackrel{H^{*}}{\longrightarrow} [H_{2}L_{3}Cu(OCIO_{3})_{2}]^{2+}$
А	В	С
212	216	216
302	236(sh) 308	270 304

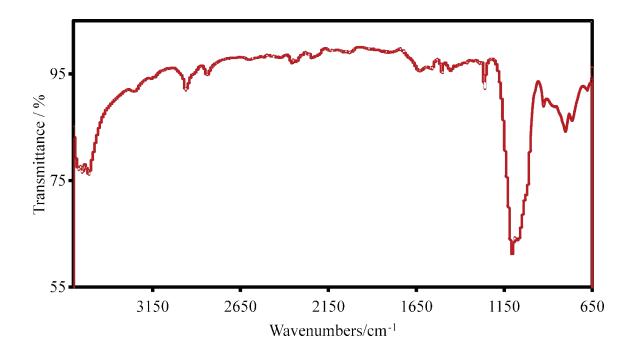
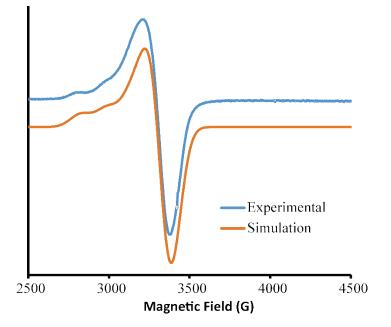



Figure S3. FT-IR of $[L_3-Cu][(ClO_4)_2]$

Figure S4. Experimental and simulated EPR spectra of $[L_3-Cu][(ClO_4)_2]$ measured in CH₃CN frozen glass (77 K). Simulation parameters: g = 2.073, g = 2.240, A = 8.5 MHz, A = 488.0 MHz, LW = 15.28 Hz.

D-H···A	D-H (Å)	H…A (Å)	D-H…A (°)	D…A (Å)
[L ₃ -Cu][(ClO ₄) ₂]				
N3-H3N…O6	1.00	2.30	159	3.248(4)
N4-H4N…O1	0.99	2.20	118	2.811(3)
[HL ₃ -Cu][(ClO ₄) ₃]				
N3-H3N…O1	0.82(3)	2.26(3)	156(2)	3.018(3)
N4-H4N…O22	0.87(3)	2.12(3)	173(2)	2.976(3)

Table 4. Selected hydrogen-bonding interactions in $[L_3-Cu][(CIO_4)_2]$ and $[HL_3-Cu][(CIO_4)_3]$.