Supporting Information for:

Phenyl substitution of cationic *bis*-cyclometalated iridium(III) complexes for iTMC-LEECs*

Kristin J. Suhr,^a Lyndon D. Bastatas,^b Yulong Shen,^b Lauren A. Mitchell,^a Gary A. Frazier,^b David W. Taylor,^b Jason D. Slinker^{*b} and Bradley J. Holliday^c

^a Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA. *E-mail: bholliday@cm.utexas.edu ^b Department of Physics, The University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX 75080, USA. *E-mail: slinker@utdallas.edu

^c Unaffiliated

Supporting Information Table of Contents

Single Crystal X-Ray Crystallography	
Fig. S1: ORTEP diagram of C0	S2
Table S1: Crystal data and structure refinement for C0	S2
Fig. S2: ORTEP diagram of 4,4'-dibromo-2,2'-bipyridine	
Table S2: Crystal data and structure refinement for 4,4'-dibromo-2,2'-bipyridine	
Electrochemistry	
Fig. S3: Cyclic voltammograms of C0 and C1	S4
Fig. S4: Cyclic voltammograms of C2 and C5	S4
Fig. S5: Cyclic voltammograms of C3 and C6	
Fig. S6: Cyclic voltammograms of C4 and C7	
UV-Vis Spectroscopy	
Table S3: UV-Vis absorption peaks and molar absorptivities of C0–C7	
Fig. S7: UV-Vis molar absorptivity spectra of C0 and C1	
Fig. S8: UV-Vis molar absorptivity spectra of C2 and C5	
Fig. S9: UV-Vis molar absorptivity spectra of C3 and C6	
Fig. S10: UV-Vis molar absorptivity spectra of C4 and C7	
Photoluminescence Spectroscopy	
Fig. S11: Photophysics spectra of C0	
Fig. S12: Photophysics spectra of C1	
Fig. S13: Photophysics spectra of C2	
Fig. S14: Photophysics spectra of C3	
Fig. S15: Photophysics spectra of C4	
Fig. S16: Photophysics spectra of C5	S14
Fig. S17: Photophysics spectra of C6	
Fig. S18: Photophysics spectra of C7	S16
Electroluminescence Spectroscopy	
Fig. S19: Current and power efficiency spectra of C0–C7 LEEC devices	
¹ H NMR Spectroscopy	G10
Fig. S20: BiPhPhPy ⁱ H NMR spectra	
Fig. S21: DI ¹ H NMR spectra \sim	
Fig. S22: $D2$ ¹ H NMR spectra	
Fig. S23: D3 ¹ H NMR spectra \sim	
Fig. 524: $D4$ 'H NMK spectra	
Fig. 525: CI 'H NMK spectra	
Fig. 520. C2 'H NWK spectra	
Fig. 527 . U3 'IT INIVIES Spectra E. S. 29. CA 14 NIMD spectra	
Fig. 520. C4 THININ Spectra Fig. S20: C5 14 NMD spectra	
Fig. 527. Co 'n INVIK Specifia Fig. 520: C6 14 NMD spectra	
Fig. S30. CU II INME Spectra \mathbf{F}_{ia} S31. C7 ¹ H NME spectra	
11g. 531. UT 11 INVIN SUCCUA	

Fig. S1 ORTEP diagram of C0. Labels for selected atoms are shown. Thermal ellipsoids are drawn at a 30% probability level. Hydrogen atoms and the PF_6 counterion are omitted for clarity.

CCDC number	1453922
Empirical formula	$C_{32}H_{24}F_6IrN_4P$
Formula weight	801.72
Temperature (K)	100(2)
Wavelength (Å)	1.54184
Crystal system	Orthorhombic
Space group	Pbca
<i>a</i> (Å)	10.8560(7)
<i>b</i> (Å)	15.7756(8)
<i>c</i> (Å)	33.3846(7)
α (°)	90
β (°)	90
γ (°)	90
Volume (Å ³)	5717.4(5)
Ζ	8
Density (calculated) (Mg/m ³)	1.863
Absorption coefficient (mm ⁻¹)	10.194
<i>F</i> (000)	3120
Crystal size (mm ³)	0.28 x 0.06 x 0.04
Theta range for data collection (°)	2.65 to 74.17
Index ranges	$-13 \le h \le 6$
	$-19 \le k \le 13$
	$-41 \le l \le 29$
Reflections collected	13568
Independent reflections	5644 [R(int) = 0.0244]
Completeness to theta = 67.68°	99.8%
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5644 / 0 / 397
Goodness-of-fit on F^2	1.054
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0247, wR2 = 0.0589
<i>R</i> indices (all data)	R1 = 0.0314, wR2 = 0.0628
Largest diff. peak and hole (e.Å-3)	0.807 and -1.002

Table S1 (Crystal	data and	structure	refinement	for	C0
------------	---------	----------	-----------	------------	-----	----

Fig. S2 ORTEP diagram of 4,4'-dibromo-2,2'-bipyridine. Thermal ellipsoids are drawn at a 30% probability level. Hydrogen atoms are omitted for clarity. The molecule resides around a crystallographic inversion center at 1/2, 1/2, 1/2. Atoms with labels appended by a ' are related by 1-x, 1-y, 1-z.

Table S2	Crystal data and structure refinement for 4,4'-dibromo-2,2'-bipyridine		
	CCDC number	1054651	
	Empirical formula	$C_{10}H_6Br_2N_2$	
	Formula weight	313.99	
	Temperature (K)	100(2)	
	Wavelength (Å)	0.71075	
	Crystal system	Monoclinic	
	Space group	$P2_1/n$	
	<i>a</i> (Å)	3.9238(11)	
	b (Å)	15.660(5)	
	<i>c</i> (Å)	7.824(2)	
	α (°)	90	
	β (°)	93.273(9)	
	γ (°)	90	
	Volume (Å ³)	480.0(2)	
	Ζ	2	
	Density (calculated) (Mg/m ³)	2.173	
	Absorption coefficient (mm ⁻¹)	8.400	
	<i>F</i> (000)	300	
	Crystal size (mm ³)	0.23 x 0.06 x 0.01	
	Theta range for data collection (°)	3.68 to 24.97	
	Index ranges	$-4 \le h \le 4$	
		$-18 \le k \le 15$	
		$-9 \le l \le 8$	
	Reflections collected	5251	
	Independent reflections	828 [R(int) = 0.1668]	
	Completeness to theta = 25.24°	95.0%	
	Refinement method	Full-matrix least-squares on F^2	
	Data / restraints / parameters	828 / 0 / 64	
	Goodness-of-fit on F^2	1.101	
	Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0488, wR2 = 0.1305	
	<i>R</i> indices (all data)	R1 = 0.0528, wR2 = 0.1351	
	Largest diff. peak and hole (e.Å ⁻³)	1.830 and -1.186	

• _

Fig. S3 Electrochemical CVs (2^{nd} scans) of C0 and C1 (1 mM) in dry acetonitrile and 0.1 M TBAPF₆ at a scan rate of 0.1 V/s. C0 and C1 have identical oxidation onsets (HOMOs) because both complexes have the same PhPy cyclometalating ligand. The reduction onsets (LUMOs) demonstrate that the ancillary ligand DiPhBipy (blue, C1) is easier to reduce than Bipy (red, C0).

Fig. S4 Electrochemical CVs (2^{nd} scans) of C2 and C5 (1 mM) in dry acetonitrile and 0.1 M TBAPF₆ at a scan rate of 0.1 V/s. C2 and C5 have identical oxidation onsets (HOMOs) because both complexes have the same **BiPhPy** cyclometalating ligand. The reduction onsets (LUMOs) demonstrate that the ancillary ligand **DiPhBipy** (blue, C5) is easier to reduce than **Bipy** (red, C2).

Fig. S5 Electrochemical CVs (2^{nd} scans) of C3 and C6 (1 mM) in dry acetonitrile and 0.1 M TBAPF₆ at a scan rate of 0.1 V/s. C3 and C6 have identical oxidation onsets (HOMOs) because both complexes have the same **DiPhPy** cyclometalating ligand. The reduction onsets (LUMOs) demonstrate that the ancillary ligand **DiPhBipy** (blue, C6) is easier to reduce than **Bipy** (red, C3).

Fig. S6 Electrochemical CVs (2^{nd} scans) of C4 and C7 (1 mM) in dry acetonitrile and 0.1 M TBAPF₆ at a scan rate of 0.1 V/s. C4 and C7 have identical oxidation onsets (HOMOs) because both complexes have the same **BiPhPhPy** cyclometalating ligand. The reduction onsets (LUMOs) demonstrate that the ancillary ligand **DiPhBipy** (blue, C7) is easier to reduce than **Bipy** (red, C4).

 Table S3
 UV-Vis absorption peaks and molar absorptivities of C0–C7

_	$\lambda_{abs} (nm) [\epsilon (10^3 \text{ M}^{-1} \text{ cm}^{-1})]^a$
C0	257* (48.4); 268* (47.7); 308sh (22.6); 336 (9.7); 356 (7.4); 381 (7.0); 409 (4.2); 467 (0.9); 491sh (0.6)
C1	267* (55.7); 286sh (47.6); 320sh (22.7); 342 (11.3); 367 (10.3); 385 (9.5); 416sh (3.7); 468 (1.2); 492sh (1.0)
C2	276* (89.7); 290sh (69.5); 313sh (30.1); 338 (12.1); 382 (6.9); 418 (4.8); 474 (0.9); 498sh (0.7)
C3	268* (66.9); 278sh (62.1); 307sh (34.6); 321sh (27.0); 339 (20.1); 381 (9.2); 466 (1.1); 497sh (0.4)
C4	268sh (91.3); 278* (98.1); 307sh (45.0); 339 (19.4); 379 (8.1); 473 (1.2)
C5	275 (95.6); 284* (96.4); 322sh (30.3); 343 (15.4); 365 (13.0); 387 (11.2); 422 (4.7); 478 (1.2); 500sh (1.1)
C6	255sh (77.9); 270* (91.9); 316sh (42.8); 339 (25.2); 384 (14.6); 466 (1.9); 496sh (1.2)
C7	271sh (119.3); 280* (123.6); 317sh (46.3); 343 (24.7); 387 (13.5); 474 (1.8); 502sh (1.2)
\overline{a} Sho peak	ulders in the absorption peak are denoted with sh; * denotes the λ_{max} of absorption; the molar absorptivity of each is in parentheses after the peak wavelength.

Fig. S7 UV-Vis absorption spectra of **C0** and **C1** in DCM at room temperature. Inset: expansion of triplet state absorption bands in the region of 450 to 600 nm. **C0** and **C1** have the same cyclometalating ligand (**PhPy**), however the addition of blocking phenyls to the ancillary ligand, **DiPhBipy** (blue, **C1**), allows for increased absorption across the spectrum.

Fig. S8 UV-Vis absorption spectra of **C2** and **C5** in DCM at room temperature. Inset: expansion of triplet state absorption bands in the region of 450 to 600 nm. **C2** and **C5** have the same cyclometalating ligand (**BiPhPy**), however the addition of blocking phenyls to the ancillary ligand, **DiPhBipy** (blue, **C5**), allows for increased absorption across the spectrum.

Fig. S9 UV-Vis absorption spectra of **C3** and **C6** in DCM at room temperature. Inset: expansion of triplet state absorption bands in the region of 450 to 600 nm. **C3** and **C6** have the same cyclometalating ligand (**DiPhPy**), however the addition of blocking phenyls to the ancillary ligand, **DiPhBipy** (blue, **C6**), allows for increased absorption across the spectrum.

Fig. S10 UV-Vis absorption spectra of C4 and C7 in DCM at room temperature. Inset: expansion of triplet state absorption bands in the region of 450 to 600 nm. C4 and C7 have the same cyclometalating ligand (**BiPhPhPy**), however the addition of blocking phenyls to the ancillary ligand, **DiPhBipy** (blue, C7), allows for increased absorption across the spectrum.

Fig. S11 Absorbance (black), photoluminescence excitation (blue), and emission (red) spectra of **C0**. A) Solution: DCM, 298 K, a 380 UV longpass optical filter was used for this emission profile; B) Dropcast Film: Evaporated from a concentrated solution in DCM, 298 K; C) Solid: 298 K; D) Frozen: 2-MeTHF, 77 K, a 380 UV longpass optical filter was used for this emission profile. The break in the solution excitation spectrum signifies an omitted peak due to half the emission wavelength. Both the broad, featureless emission peaks (red) and the rigidochromic effect present in the frozen state (D) are indicative of MLCT emission.

Fig. S12 Absorbance (black), photoluminescence excitation (blue), and emission (red) spectra of **C1**. A) Solution: DCM, 298 K, a 380 UV longpass optical filter was used for this emission profile; B) Dropcast Film: Evaporated from a concentrated solution in DCM, 298 K; C) Solid: 298 K; D) Frozen: 2-MeTHF, 77 K. The break in the solution excitation spectrum signifies an omitted peak due to half the emission wavelength. Both the broad, featureless emission peaks (red) and the rigidochromic effect present in the frozen state (D) are indicative of MLCT emission.

Fig. S13 Absorbance (black), photoluminescence excitation (blue), and emission (red) spectra of **C2**. A) Solution: DCM, 298 K, a 380 UV longpass optical filter was used for this emission profile; B) Dropcast Film: Evaporated from a concentrated solution in DCM, 298 K; C) Solid: 298 K; D) Frozen: 2-MeTHF, 77 K. The break in the solution excitation spectrum signifies an omitted peak due to half the emission wavelength. Both the broad, featureless emission peaks (red) and the rigidochromic effect present in the frozen state (D) are indicative of MLCT emission.

Fig. S14 Absorbance (black), photoluminescence excitation (blue), and emission (red) spectra of **C3**. A) Solution: DCM, 298 K, a 380 UV longpass optical filter was used for this emission profile; B) Dropcast Film: Evaporated from a concentrated solution in DCM, 298 K; C) Solid: 298 K; D) Frozen: 2-MeTHF, 77 K. The break in the solution excitation spectrum signifies an omitted peak due to half the emission wavelength. Both the broad, featureless emission peaks (red) and the rigidochromic effect present in the frozen state (D) are indicative of MLCT emission.

Fig. S15 Absorbance (black), photoluminescence excitation (blue), and emission (red) spectra of C4. A) Solution: DCM, 298 K, a 380 UV longpass optical filter was used for this emission profile; B) Dropcast Film: Evaporated from a concentrated solution in DCM, 298 K; C) Solid: 298 K; D) Frozen: 2-MeTHF, 77 K. The break in the solution excitation spectrum signifies an omitted peak due to half the emission wavelength. Both the broad, featureless emission peaks (red) and the rigidochromic effect present in the frozen state (D) are indicative of MLCT emission.

Fig. S16 Absorbance (black), photoluminescence excitation (blue), and emission (red) spectra of **C5**. A) Solution: DCM, 298 K, a 380 UV longpass optical filter was used for this emission profile; B) Dropcast Film: Evaporated from a concentrated solution in DCM, 298 K; C) Solid: 298 K; D) Frozen: 2-MeTHF, 77 K. The break in the solution excitation spectrum signifies an omitted peak due to half the emission wavelength. Both the broad, featureless emission peaks (red) and the rigidochromic effect present in the frozen state (D) are indicative of MLCT emission.

Fig. S17 Absorbance (black), photoluminescence excitation (blue), and emission (red) spectra of **C6**. A) Solution: DCM, 298 K, a 380 UV longpass optical filter was used for this emission profile; B) Dropcast Film: Evaporated from a concentrated solution in DCM, 298 K; C) Solid: 298 K; D) Frozen: 2-MeTHF, 77 K. The break in the solution excitation spectrum signifies an omitted peak due to half the emission wavelength. Both the broad, featureless emission peaks (red) and the rigidochromic effect present in the frozen state (D) are indicative of MLCT emission.

Fig. S18 Absorbance (black), photoluminescence excitation (blue), and emission (red) spectra of **C7**. A) Solution: DCM, 298 K, a 380 UV longpass optical filter was used for this emission profile; B) Dropcast Film: Evaporated from a concentrated solution in DCM, 298 K; C) Solid: 298 K; D) Frozen: 2-MeTHF, 77 K. The break in the solution excitation spectrum signifies an omitted peak due to half the emission wavelength. Both the broad, featureless emission peaks (red) and the rigidochromic effect present in the frozen state (D) are indicative of MLCT emission.

Fig. S19: A) Current efficiency vs. time and B) power efficiency vs. time of **C0–C7** LEEC devices with 0.3% LIPF₆. Plotted with a logarithmic scale on the x- and y-axes to more easily visualize the plot maxima.

Fig. S20 ¹H NMR spectrum of **BiPhPhPy** in CD₂Cl₂ at 300 MHz. Insets: Expanded regions to show convoluted secondary coupling patterns denoted by a tilde (~). 8.75 (dd, J = 5.1, 0.9, 1H), 8.34 (t, J = 1.7, 1H), 8.08 (dt, J = 7.7, 1.4, 1H), 8.05 (~s, 1H), 7.72 (m, 5H), 7.49 (m, 7H), 7.39 (~t, J = 7.4, 1H).

Fig. S21 ¹H NMR spectrum of **D1** in CD₂Cl₂ at 400 MHz. Insets: Expanded regions to show convoluted secondary coupling patterns denoted by a tilde (~). 9.25 (~d, J = 5.8, 4H), 7.94 (d, J = 7.8, 4H), 7.80 (~t, J = 7.8, 4H), 7.56 (dd, J = 7.8, 1.4, 4H), 6.82 (m, 8H), 6.60 (~t, J = 7.6, 4H), 5.87 (dd, J = 7.6, 0.8, 4H).

Fig. S22 ¹H NMR spectrum of **D2** in CD₂Cl₂ at 400 MHz. Insets: Expanded regions to show convoluted secondary coupling patterns denoted by a tilde (~). 9.35 (d, J = 5.6, 4H), 8.09 (d, J = 8.0, 4H), 7.88 (~t, J = 7.9, 4H), 7.81 (d, J = 2.0, 4H), 7.51 (d, J = 8.0, 8H), 7.36 (t, J = 7.8, 8H), 7.26 (t, J = 7.2, 4H), 6.91 (m, 8H), 6.03 (d, J = 8.4, 4H).

Fig. S23 ¹H NMR spectrum of **D3** in CD₂Cl₂ at 400 MHz. Insets: Expanded regions to show convoluted secondary coupling patterns denoted by a tilde (~). 9.32 (d, J = 5.6, 4H), 8.19 (d, J = 2.0, 4H), 7.67 (m, 12H), 7.52 (m, 12H), 6.98 (dd, J = 6.4, 2.0, 4H), 6.87 (~t, J = 7.4, 4H), 6.66 (~t, J = 7.4, 4H), 6.09 (dd, J = 7.8, 1.0, 4H).

Fig. S24 ¹H NMR spectrum of **D4** in CD₂Cl₂ at 400 MHz. Insets: Expanded regions to show convoluted secondary coupling patterns denoted by a tilde (~). 9.42 (d, J = 6.0, 4H), 8.33 (d, J = 2.0, 4H), 7.94 (d, J = 2.0, 4H), 7.72 (~d, J = 7.8, 8H), 7.55 (m, 20H), 7.37 (~t, J = 7.6, 8H), 7.26 (tt, J = 7.4, 1.4, 4H), 7.07 (dd, J = 6.2, 2.2, 4H), 6.95 (dd, J = 8.0, 2.0, 4H), 6.24 (d, J = 8.0, 4H).

Fig. S25 ¹H NMR spectrum of **C1** in CD₂Cl₂ at 400 MHz. Insets: Expanded regions to show convoluted secondary coupling patterns denoted by a tilde (~). 8.64 (d, J = 1.6, 2H), 8.08 (d, J = 6.0, 2H), 8.00 (d, J = 8.4, 2H), 7.80 (m, 8H), 7.68 (dd, J = 5.8, 1.8, 2H), 7.64 (~d, J = 6.0, 2H), 7.60 (m, 6H), 7.11 (td, J = 7.6, 1.2, 2H), 7.04 (~t, J = 6.7, 2H), 6.98 (td, J = 7.4, 1.3, 2H), 6.36 (dd, J = 8.0, 0.8, 2H).

Fig. S26 ¹H NMR spectrum of **C2** in CD₂Cl₂ at 400 MHz. Insets: Expanded regions to show convoluted secondary coupling patterns denoted by a tilde (~). 8.52 (d, J = 8.0, 2H), 8.16 (m, 4H), 8.09 (d, J = 8.0, 2H), 7.98 (d, J = 2.0, 2H), 7.85 (~t, J = 7.8, 2H), 7.61 (~d, J = 8.4, 4H), 7.56 (~d, J = 5.6, 2H), 7.51 (~t, J = 6.6, 2H), 7.44 (~t, J = 7.4, 4H), 7.33 (~t, J = 7.4, 2H), 7.23 (dd, J = 7.6, 2.0, 2H), 7.06 (~t, J = 6.8, 2H), 6.44 (d, J = 8.0, 2H).

Fig. S27 ¹H NMR spectrum of **C3** in CD₂Cl₂ at 400 MHz. Insets: Expanded regions to show convoluted secondary coupling patterns denoted by a tilde (~). 8.53 (d, J = 8.0, 2H), 8.15 (m, 4H), 8.09 (~d, J = 5.4, 2H), 7.85 (dd, J = 7.6, 1.2, 2H), 7.73 (~d, J = 8.2, 4H), 7.53 (m, 10H), 7.23 (dd, J = 6.0, 2.0, 2H), 7.12 (td, J = 7.4, 1.2, 2H), 6.99 (td, J = 7.5, 1.3, 2H), 6.46 (dd, J = 7.6, 0.8, 2H).

Fig. S28 ¹H NMR spectrum of C4 in CD₂Cl₂ at 400 MHz. Insets: Expanded regions to show convoluted secondary coupling patterns denoted by a tilde (~). 8.58 (~d, J = 8.2, 2H), 8.29 (d, J = 2.0, 2H), 8.18 (m, 4H), 8.08 (d, J = 2.0, 2H), 7.77 (~d, J = 8.2, 4H), 7.64 (~d, J = 8.4, 4H), 7.61 (d, J = 6.4, 2H), 7.55 (m, 8H), 7.44 (~t, J = 7.6, 4H), 7.34 (~t, J = 7.2, 2H), 7.28 (~t, J = 7.6, 4H), 6.59 (d, J = 8.0, 2H).

Fig. S29 ¹H NMR spectrum of **C5** in CD₂Cl₂ at 400 MHz. Insets: Expanded regions to show convoluted secondary coupling patterns denoted by a tilde (~). 8.67 (d, J = 1.6, 2H), 8.18 (d, J = 5.6, 2H), 8.13 (d, J = 8.0, 2H), 8.01 (d, J = 2.0, 2H), 7.88 (~t, J = 7.8, 2H), 7.81 (m, 4H), 7.72 (~d, J = 6.0, 4H), 7.61 (m, 10H), 7.45 (~t, J = 7.6, 4H), 7.34 (~t, J = 7.2, 2H), 7.27 (dd, J = 8.0, 2.0, 2H), 7.10 (~t, J = 6.7, 2H), 6.49 (d, J = 8.0, 2H).

Fig. S30 ¹H NMR spectrum of **C6** in CD₂Cl₂ at 400 MHz. Insets: Expanded regions to show convoluted secondary coupling patterns denoted by a tilde (~). 8.69 (d, J = 1.6, 2H), 8.20 (d, J = 2.0, 2H), 8.14 (d, J = 5.6, 2H), 7.89 (~d, J = 7.6, 2H), 7.82 (~d, J = 8.0, 4H), 7.74 (~d, J = 8.2, 4H), 7.70 (m, 4H), 7.56 (m, 12H), 7.27 (dd, J = 6.0, 2.0, 2H), 7.14 (~t, J = 7.6, 2H), 7.02 (td, J = 7.4, 1.2, 2H), 6.51 (dd, J = 7.6, 0.8, 2H).

Fig. S31 ¹H NMR spectrum of **C7** in CD₂Cl₂ at 400 MHz. Insets: Expanded regions to show convoluted secondary coupling patterns denoted by a tilde (~). 8.72 (d, J = 1.6, 2H), 8.32 (d, J = 2.0, 2H), 8.24 (d, J = 6.0, 2H), 8.11 (d, J = 2.0, 2H), 7.84 (~d, J = 8.0, 4H), 7.77 (m, 8H), 7.67 (~d, J = 7.2, 4H), 7.57 (m, 12H), 7.46 (~t, J = 7.8, 4H), 7.33 (m, 6H), 6.64 (d, J = 7.6, 2H).