S1. Crystal packing

Fig. S1. Section of the crystal packing of compound $[K(H_2O)_2\{V^VO_2(bp-bhz)\}]_2$ **5.** π - π interactions between dimeric aggregates (down) with other dimeric aggregates (up) through face-to-face and edge-to-face motifs of phenyl groups are shown in dashed black lines.

Fig. S2. Section of the crystal packing of compound $[K(H_2O)_2\{V^VO_2(bp-fah)\}]_2$ **6.** Hydrogen bonds between dimeric aggregates are shown in dashed black lines.

Fig. S3. Crystal packing of compound $[V^VO_2(Hbp-bhz)] \cdot 1.5H_2O$ **7.** Hydrogen bonds between water molecules and vanadium complexes are shown in dashed black lines.

Fig. S4. Section of the crystal packing of compound $[V^VO_2(Hbp-fah)]$ **8.** Hydrogen bonds between terminal oxygen atoms of vanadium complexes and protonated azomethine nitrogen atoms are shown in dashed black lines.

Fig. S5. Crystal packing of compound [V^VO₂(Hbp-nah)] **9.** π - π interactions between delocalized π clouds around of azomethine groups and pyridine groups are shown in dashed black lines.

Fig. S6. Crystal packing of compound [V^VO₂(Hbp-inh)] DMSO **10.** Layers of vanadium complexes and DMSO molecules interact by van der Waals forces.

Fig. S7. Crystal packing of compound [V^VO(bp-fah)(OCH₃)] **12.** Layers of vanadium complexes interact by van der Waals forces.

S2. Solid state analysis

Compounds	Temp.	Obs. %	Cal. %	Expected
	[°C]			group/Residue
$[V^{IV}O(bp-bhz)H_2O]$ 1	125	3.5	3.7	H ₂ O
	497	18.9	18.8	V_2O_5
$[V^{IV}O(bp-fah)H_2O]$ 2	112	4.0	3.8	H_2O
	521	19.8	19.3	V_2O_5
$[V^{IV}O(bp-nah)H_2O]$ 3	114	3.8	3.7	H ₂ O
	489	19.2	18.8	V_2O_5
[V ^{IV} O(bp-inh)H ₂ O] 4	121	3.6	3.7	H_2O
	500	18.2	18.8	V_2O_5
$K(H_2O)_2[V^VO_2(bp-bhz)]$ 5	122	6.7	6.5	$2H_2O$
	593	24.3	25.0	KVO ₃
$K(H_2O)_2[V^VO_2(bp-fah)]$ 6	104	7.1	6.6	H_2O
	599	25.6	25.5	KVO ₃
[V ^V O ₂ (Hbp-bhz)] 7	578	18.6	19.1	V_2O_5
[V ^V O ₂ (Hbp-fah)] 8	580	19.9	19.5	V_2O_5
[V ^V O ₂ (Hbp-nah)] 9	583	18.8	19.0	V_2O_5
[V ^V O ₂ (Hbp-inh)] 10	588	19.8	19.0	V_2O_5
[VVO(bp-bhz)(OMe)] 11	125	6.4	5.9	OMe
	499	16.6	17.3	V_2O_5
[V ^V O(bp-fah)(OMe)] 12	112	6.0	6.0	OMe
	521	16.8	17.7	V_2O_5
[V ^V O(bp-nah)(OMe)] 13	124	6.5	5.9	OMe
	500	17.8	17.3	V_2O_5
[V ^V O(bp-inh)(OMe)] 14	142	5.8	6.8	OMe
	501	20.3	19.6	V_2O_5

Table S1. Details of the thermogravimetric analysis of the complexes.

Compounds	v (N-H)	v (C=O)	v(C-	v (C=N)	v (N-N)	v (V=O)/ v(VO ₂)
		(hydrazide/pyrazolone)	O _{enolic})			
H_2 bp-bhz I	3130	1644 , 1594		1539	1007	_
H ₂ bp-fah II	3127	1632, 1593		1542	1005	_
H ₂ bp-nah III	3090	1647, 1594		1530	1009	_
H ₂ bp-inh IV	3060	1641 , 1587		1531	1011	
$[V^{IV}O(bp-bhz)H_2O]$ 1		1594, 1568	1262	1520	1048	979
$[V^{IV}O(bp-fah)H_2O]$ 2		1608, 1562	1265	1523	1044	991
$[V^{IV}O(bp-nah)H_2O]$ 3		1592, 1577	1260	1522	1061	994
$[V^{IV}O(bp\text{-inh})H_2O]$ 4		1598, 1580	1258	1521	1057	996
$K(H_2O)_2[V^VO_2(bp-bhz)]$ 5		1592, 1565	1259	1523	1047	934, 899
$K(H_2O)_2[V^VO_2(bp-fah)]$ 6		1606, 1564	1260	1521	1048	943, 917
$[V^{V}O_{2}(Hbp-bhz)]$ 7	3086	1598, 1572	-	1527	1052	937, 907
[V ^V O ₂ (Hbp-fah)] 8	3091	1601, 1562	-	1528	1048	925, 901
[V ^v O ₂ (Hbp-nah)] 9	3066	1593, 1576	1247	1522	1066	927, 899
[V ^V O ₂ (Hbp-inh)] 10	3051	1592, 1579	1250	1524	1055	937, 906
[V ^V O(bp-bhz)(OMe)] 11		1595, 1543	1256	1523	1085	968
[V ^V O(bp-fah)(OMe)] 12		1608, 1556	1242	1521	1081	983
[V ^v O(bp-nah)(OMe)] 13		1596, 1541	1251	1522	1085	982
[VVO(bp-inh)(OMe)] 14		1601, 1542	1248	1525	1089	971

Table S2. Selected IR spectral data (v in cm⁻¹) of ligands and complexes.

S3. Characterization in solution

Table S3. UV-visible spectral data of ligands and complexes either in methanol or DMSO.

Ligand and Complexes	$\lambda_{max} / nm (\epsilon / M^{-1} cm^{-1})$
H ₂ bp-bhz I	351 (4.81×10 ⁴), 303 (3.61×10 ⁴), 251 (1.48×10 ⁴), 204(1.44×10 ⁴)
H ₂ bp-fah II	352 (5.51×10 ⁴), 303 (3.23×10 ⁴), 253 (1.89×10 ⁴), 204 (1.50×10 ⁴)
H ₂ bp-nah III	358 (4.73×10 ⁴), 305 (2.84×10 ⁴), 250 (1.54×10 ⁴), 205 (1.35×10 ⁴)
H ₂ bp-inh IV	368 (4.96×10 ⁴), 306 (2.96×10 ⁴), 251 (1.64×10 ⁴), 205 (1.41×10 ⁴)
$[V^{IV}O(bp-bhz)(H_2O)]$ 1	654 (1.4×10 ²)), 480 (1.7×10 ²), 398 (1.34×10 ³), 341 (3.33×10 ⁴), 245 (2.32×10 ⁴), 205 (5.43×10 ⁴)
$[V^{IV}O(bp-fah)(H_2O)] 2$	667 (2.1×10 ²), 509 (2.6×10 ²), 388 (2.32×10 ³), 325(3.03×10 ³), 242 (3.43×10 ⁴), 206 (1.22×10 ⁴)
$[V^{IV}O(bp-nah)(H_2O)]$ 3	645 (1.7×10 ²), 486 (2.2×10 ²), 389(2.32×10 ³), 326 (1.23×10 ⁴), 244 (3.24×10 ³), 207(1.51×10 ³)
$[V^{IV}O(bp-inh)(H_2O)]$ 4	650 (1.5×10 ²), 480 (1.9×10 ²), 397 (1.51×10 ³), 338 (4.65×10 ⁴), 235 (2.13×10 ⁴), 205 (1.18×10 ⁴)
$K(H_2O)_2[V^VO_2(bp-bhz)]$ 5	401 (3.13×10 ³), 342 (2.12×10 ⁴), 241 (1.45×10 ⁴), 205 (1.98×10 ⁴)
$K(H_2O)_2[V^VO_2(bp-fah)]$ 6	394 (2.78×10 ³), 346 (3.13×10 ⁴), 248 (2.34×10 ⁴), 207 (2.12×10 ⁴)
$[V^VO_2(Hbp-bhz)]$ 7	402 (2.32×10 ³), 345(1.18×10 ⁴), 243 (3.39×10 ⁴), 204 (4.21×10 ⁴)
[V ^V O ₂ (Hbp-fah)] 8	404 (2.67×10 ³), 366 (2.32×10 ⁴), 249 (1.78×10 ⁴), 205 (4.12×10 ⁴)
[V ^V O ₂ (Hbp-nah)] 9	388 (4.12×10 ³), 341 (3.05×10 ⁴), 243 (2.13×10 ⁴), 207 (3.12×10 ⁴)
[V ^V O ₂ (Hbp-inh)] 10	393(1.45×10 ³), 341 (6.32×10 ⁴), 235 (2.48×10 ⁴), 206 (3.09×10 ⁴)
[VVO(bp-bhz)(OMe)] 11	394 (2.13×10 ³), 341 (3.02×10 ⁴), 245 (2.67×10 ⁴), 206 (2.56×10 ⁴)
[V ^V O(bp-fah)(OMe)] 12	401(2.34×10 ³), 309(3.56×10 ³), 248 (3.12×10 ⁴), 207 (2.33×10 ⁴)
[VVO(bp-nah)(OMe)] 13	397(3.45×10 ³), 351(2.12×10 ⁴), 258(2.34×10 ³), 209(2.12×10 ³)
[VVO(bp-inh)(OMe)] 14	399 (2.13×10 ³), 347 (3.23×10 ⁴), 262 (1.87×10 ⁴), 205 (2.11×10 ⁴)

Fig. S8. X-band EPR spectra measured at 77K for the V^{IV}O-complexes **3** and **4** dissolved in DMSO.

Fig. S9. UV-Vis spectral changes observed during titration of $[V^{IV}O(bp-fah)H_2O]$ **2** with H_2O_2 . The spectra were recorded upon stepwise additions of one drop portions of H_2O_2 (3.1×10⁻² M) to 25 mL of 4.2×10⁻⁴ M solution of **2** in DMSO. The inset shows spectral changes observed for the d-bands of complex **2** in DMSO upon addition of H_2O_2 . The spectra were recorded upon

stepwise addition of two drop portions of H_2O_2 (3.6×10⁻² M) to 25 mL of a 3.3 × 10⁻³ M solution of **2** in DMSO.

Fig. S10. (a) Spectral changes observed during titration of $[V^VO_2(Hbp-nah)]$ **9** with H_2O_2 . The spectra were recorded upon stepwise addition of one drop portions of 1.2×10^{-2} M H_2O_2 to 25 mL of 1.3×10^{-4} M solution in CH₃OH. (b) Spectral changes observed during titration of $[V^VO_2(Hbp-inh)]$ **10** with H_2O_2 . The spectra were recorded upon stepwise addition of one drop portions of 2.5×10^{-2} M H_2O_2 to 25 mL of 2.2×10^{-4} M solution in CH₃OH.

Fig. S11. ⁵¹V NMR spectra measured for 3mM solutions of the complexes in DMSO, before and after addition of different amounts of H_2O_2 . a) Complex 9 and b) complex 14.

Fig. S12. ⁵¹V NMR spectra measured for 3mM solutions of the complexes after addition of H_2O_2 . a) in MeOH and b) in DMSO.

S4. Catalytic studies

Fig. S13. (a) Effect of amount of catalyst [[$V^VO(bp-bhz)(OMe)$] on the multi-component Hantzsch reaction. Reaction conditions: benzaldehyde (0.53 g, 0.0050 mol), ethylacetoacetate (0.010 mol, 1.3 g), ammonium acetate (0.38 g, 0.0050 mol) and H₂O₂ (0.56 g, 0.0050 mol) at 30 °C. (b) Effect of different substrate/oxidant ratios on the Hantzsch reaction. Reaction conditions: benzaldehyde (0.53 g, 0.0050 mol), ethylacetoacetate (1.3 g, 0.010 mol), ammonium acetate (0.38 g, 0.0050 mol,) and catalyst (0.0020 g) at 30 °C. (c) Effect of the temperature on the Hantzsch reaction. Reaction conditions: benzaldehyde (0.53 g, 0.0050 mol), ethylacetoacetate (1.3 g, 0.010 mol), ammonium acetate (0.38 g, 0.0050 mol), H₂O₂ (0.56 g, 0.0050 mol) and catalyst (0.0020 g).

Fig. S14. (a) Effect of amounts of catalyst $[V^{V}O(bp-bhz)(OMe)]$ on the oxidation of tetralin. Other reaction conditions: tetralin (1.3 g, 0.010 mol), 30% H₂O₂ (2.3 g, 0.020 mol), acetonitrile (5 mL) and reaction temp. (80°C)]. (b) Effect of substrate/oxidant ratios on the oxidation of tetralin. Other reaction conditions: tetralin (1.3 g, 0.010 mol), catalyst (0.0020 g), acetonitrile (5 mL) and reaction temp. (80 °C). (c) Effect of amounts of solvent on the oxidation of tetralin. Other reaction conditions: tetralin (1.3 g, 0.010 mol), catalyst (0.0020 g), 30% H₂O₂ (3.4 g, 0.030 mmol) and reaction temp. (80 °C). (d) Effect of variation of temperature on the oxidation of tetralin. Other reaction conditions: tetralin (1.3 g, 0.010 mol), catalyst (0.0020 g), 30% H₂O₂ (3.4 g, 0.030 mmol) and reaction temp. (80 °C). (d) Effect of variation of temperature on the oxidation of tetralin. Other reaction conditions: tetralin (1.3 g, 0.010 mol), catalyst (0.0020 g), 30% H₂O₂ (3.4 g, 0.030 mmol) and reaction temp. (80 °C). (d) Effect of variation of temperature on the oxidation of tetralin. Other reaction conditions: tetralin (1.3 g, 0.010 mol), catalyst (0.0020 g), 30% H₂O₂ (3.4 g, 0.030 mmol) and reaction temp. (80 °C). (d) Effect of variation of temperature on the oxidation of tetralin. Other reaction conditions: tetralin (1.3 g, 0.010 mol), catalyst (0.0020 g), 30% H₂O₂ (3.4 g, 0.030 mol and acetonitrile (5 mL).