Electronic Supplementary Information for

Isolation and characterization of gem-diaurated species having two

$\mathbf{C}-\mathrm{Au} \boldsymbol{\sigma}$ bonds in gold(I)-activated amidiniumation of alkyne

Jiwei Wang, ${ }^{[a]}$ Shichang Lv, ${ }^{[a]}$ Haifeng Chen, ${ }^{[a]}$ Min Shi, ${ }^{[a, b]}$, and Jun Zhang*, $[a]$

${ }^{\mathrm{a}}$ Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry \& Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
${ }^{\mathrm{b}}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 China

General Information:

Unless otherwise stated, all reactions and manipulations were performed using standard Schlenk techniques. All solvents were purified by distillation using standard methods. Commercially available reagents were used without further purification. NMR spectra were recorded by using a Bruker 400 MHz spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standar (${ }^{1} \mathrm{H}$ NMR $\mathrm{CDCl}_{3}: 7.26$ ppm; ${ }^{13} \mathrm{C}$ NMR $\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR DMSO: 39.43 ppm). Mass spectra were recorded on the HP-5989 instrument by EI/ESI methods. X-ray diffraction analysis was performed by using a Bruker Smart-1000X-ray diffractometer.

Propiolic acid is commercially available and was used as received without further purification. Compound $\mathbf{1}$ was synthesized by the procedure we previously reported. ${ }^{1}$

Preparation and characterization

Synthesis of complex 2b

The mixture of $1(50 \mathrm{mg}, 0.12 \mathrm{mmol})$ and $\mathrm{AuCl} \cdot \mathrm{Me}_{2} \mathrm{~S}(35 \mathrm{mg}, 0.12 \mathrm{mmol})$ was stirred in the $\operatorname{DCE}(1 \mathrm{ml})$ at $25^{\circ} \mathrm{C}$ for 30 min . All volatiles were removed under vacuum, and the rude product was washed twice with diethyl ether to afford pure $\mathbf{2 b}$ as a white solid ($63 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.05(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 2.75-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.60(\mathrm{~m}$, $2 \mathrm{H}), 1.42(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) $\delta=173.65,157.20,154.16,145.74,137.68,131.62,128.30,126.11,124.56$, 64.84, 45.02, 28.83, 24.76, 23.85, 23.48, 23.00, 22.77, 15.09; HRMS (ESI): m/z [2M-Cl] ${ }^{+}$ calcd. for $\mathrm{C}_{56} \mathrm{H}_{72} \mathrm{Au}_{2} \mathrm{ClN}_{4} \mathrm{O}_{2}^{+}$: 1261.4675 ; found: 1261.4663.

Synthesis of complex 2c

The mixture of $\mathrm{PPh}_{3} \mathrm{AuCl}(50 \mathrm{mg}, 0.10 \mathrm{mmol})$ and silver triflate ($26 \mathrm{mg}, 0.10 \mathrm{mmol}$) was stirred in the DCE $(1 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ for 15 minutes, then the solid components were filtered off and the filtrate was added to the solution of $\mathbf{1}(42 \mathrm{mg}, 0.10 \mathrm{mmol})$ in the DCE $(0.5 \mathrm{~mL})$. After stirring for 30 min at $25^{\circ} \mathrm{C}$, all volatiles were removed under vacuum. The rude product was washed twice with diethyl ether to afford pure $\mathbf{2 c}$ as a yellow solid ($77 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.48(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.28(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 4 \mathrm{H})$, 7.53-7.45 (m, 7H), 7.35-7.26 (m, 8H), 7.05-6.99 (m, 2H), 2.73-2.59 (m, 4H), 1.30-1.21 (m, 24 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=158.09,157.41,145.71,139.58,134.09,131.93$, 131.65, 129.13, 128.48, 128.12, 125.92, 124.56, 65.80, 29.69, 29.45, 24.49, 23.98, 23.63, 15.22; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=42.30$; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{OTf}]^{+}$calcd. for $\mathrm{C}_{46} \mathrm{H}_{51} \mathrm{AuN}_{2} \mathrm{OP}^{+}: 875.3405$; found: 875.3408.

Synthesis of digold complex 3

The mixture of $\mathbf{2 c}(30 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mu \mathrm{l})$ was stirred in the $\mathrm{DCM}(1 \mathrm{ml})$ at $25{ }^{\circ} \mathrm{C}$. After stirred for 2 days, a 37.5% NMR yield of digold complex 3 was observed by NMR spectroscopy. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.49-7.27(\mathrm{~m}, 32 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 4 \mathrm{H})$, $7.04(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 3.27-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.78(\mathrm{~m}, 2 \mathrm{H})$, $1.39-1.16(\mathrm{~m}, 18 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=37.60,37.52$; HRMS (ESI): m/z [M-OTf] ${ }^{+}$calcd. for $\mathrm{C}_{64} \mathrm{H}_{67} \mathrm{Au}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}{ }^{+}: 1351.4009$; found: $1351.4247 ;{ }^{13} \mathrm{C}$ NMR data was not conclusive due to the presence of considerable $\mathrm{PPh}_{3} \mathrm{AuOTf}$ and unreacted monogold complex 3.

Acidolysis of complex 2c in the presence of HOTf:

The mixture of $\mathbf{2 c}(100 \mathrm{mg}, 0.09 \mathrm{mmol})$ and trifluoromethanesulfonic acid ($14 \mathrm{mg}, 0.09$ $\mathrm{mmol})$ was stirred in the DCE $(1.5 \mathrm{ml})$ at $25^{\circ} \mathrm{C}$ for 3 h . All volatiles were removed under vacuum, a 35% NMR yield of complex 4 was observed by NMR spectroscopy. The NMR analysis data of $\mathbf{4}$ are in full agreement with those reported in the literature. ${ }^{1}$

Reference:

1. Lv, S.; Wang, J.; Zhang, C.; Xu, S.; Shi, M.; Zhang, J. Angew. Chem., Int. Ed. 2015, 54, 14941.

NMR Spectra:

Complex 2b

ju-lv1-732

Complex 2c

ju-1v1-1338
PROTON CDC13 \{D: \data\research\nev\2015-5-6\} ninr 42

ju-1v1-1335
${ }_{\text {C13CPD }}$ CDC13 \{D: \data\research \backslash nev $\left.\backslash 2015-4-30\right\}$ nirr 19

स
$\frac{n}{1}$

ju-1v1-1335
P31CPD CDC13 \{D: \data\research\nev\2015-4-30\} nar 19

Complex 3

150427-JU-NJW-2164

ju-wjw-2164
P31CPD CDC13 \{D: \data\research\nev\2015-4-29\} nar

$\left.\begin{array}{l}\angle I S^{\circ} \angle \varepsilon \\ 96 S^{\circ} \angle \varepsilon\end{array}\right\rangle$

X-Ray Crystallography. Each crystal was mounted on a glass fiber. Crystallographic measurements were made on a Bruker Smart Apex 100 CCD area detector using graphite monochromated Mo-Karadiation $\left(\lambda_{\mathrm{Mo}-\mathrm{K} \alpha}=0.71073 \AA\right)$. The structures were solved by directed methods (SHELXS-97) and refined on F^{2} by full-matrix least squares (SHELX-97) using all unique data. All the calculations were carried out with the SHELXTL18 program.

Key details of the crystal and structure refinement data are summarized in Table S1-S2. Further crystallographic details may be found in the respective CIF files, which were deposited at the Cambridge Crystallographic Data Centre, Cambridge, UK [CCDC 1440087 (3)].

Table S1. Crystal Data, Data Collection, and Structure Refinement for 3.

	3
Identification code	mo_50521aa
Formula	$\begin{gathered} \mathrm{C}_{65} \mathrm{H}_{67} \mathrm{Au}_{2} \mathrm{~F}_{3} \\ \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{~S} \end{gathered}$
Formula weight	1501.14
$T, \mathrm{~K}$	203(2)
crystal system	Triclinic
space group	P-1
$a, ~ \AA \AA$	13.7513(10)
b, \AA	16.025(2)
c, \AA	17.1415(12)
α, deg	109.0540(10)
β, deg	$110.9850(10)$
γ, deg	96.8090(10)
Volume, \AA^{3}	3212.7(5)
Z	2
$\begin{gathered} D_{\text {calc, }}, \mathrm{Mg} / \mathrm{m}^{3} \\ \text { absorption } \\ \text { coefficient, } \mathrm{mm}^{-1} \end{gathered}$	1.552 4.700
F(000)	1484
crystal size, mm	$\begin{gathered} 0.260 \times 0.170 \mathrm{x} \\ 0.150 \end{gathered}$
2θ range, deg	1.395 to 26.999
reflections collected/unique	$\begin{gathered} 22748 / 13794 \\ {[\mathrm{R}(\mathrm{int})=} \\ 0.0237] \end{gathered}$
data / restraints/ parameters goodness of fit on F^{2}	$13794 / 60 / 729$ 1.084
final R indices $[I>2 \sigma(I)]^{a}$	$\begin{gathered} \mathrm{R} 1=0.0388 \\ \mathrm{wR} 2=0.1113 \end{gathered}$
R indices (all data)	$\begin{gathered} \mathrm{R} 1=0.0540 \\ \mathrm{wR} 2=0.1283 \end{gathered}$
lgst diff peak	1.631 and -
and hole, e/ \AA^{3}	0.958

