Donor-substituted phosphanes – surprisingly weak Lewis donors for phosphenium cation stabilisation

Ewan R. Clark*, Andryj M. Borys and Kyle Pearce

Electronic Supporting Information

- 1. Synthetic Work
- 2. Crystallographic Details
- 3. Computational Results and Structures
- 4. References

Synthetic Work

Solvents were purchased from Fisher Scientific. DCM was dried using an Innovation Technologies Benchtop Solvent Purification System and stored over activated molecular sieves. ⁿHexane and Diethyl ether were dried by reflux over sodium/benzophenone and stored over potassium mirrors. Anisole and ⁿBuLi were purchased from Acros, N,N-dimethylaniline from Sigma Aldrich, and N,Ndimethylbenzylamine, Ph₂PCI, PhPCl₂ purchased from Alfa Aesar; Ph₂PCI and PhPCl₂ were distilled prior to use, the remainder were used without further purification. Sodium tetrakis(3,5trifluoromethylphenyl)borate (NaBAr^F) was sourced from Matrix Scientific and washed with DCM prior to use. d2-DCM and CDCl₃ were purchased from Goss Scientific and distilled from CaH₂ and stored over activated 4 Å molecular sieves prior to use. Ortholithiation of anisole, N,Ndimethylaniline, and N,N-dimethylbenzylamine were performed according to literature methods.¹

NMR spectra were recorded on a JEOL 400MHz NMR Spectrometer. Where deutro-solvent insert capillaries were used, the spectra were referenced to the appropriate residual solvent peaks.

Synthetic Work:

Donor Phosphine synthesis:

The donor substituted phosphanes below are well established in the literature as chelating ligands. In recent examples, **1a** has been shown to coordinate in a chelating mode to Ni², Rh³ and Cu⁴; **1b** to Fe,⁵ Ni,⁶ Ru,⁷ and Rh^{8,9}; **1c** to Fe,¹⁰ and Pd and Cu¹¹; and **1d** to Ru⁷ and Rh⁹.

1a, **1b**, **1c** and **1d** were prepared according to the same general method *via* unoptimised syntheses using the appropriate aryl lithium and halophosphanes. The synthesis of **1b** is given as exemplar. **1b**: Ph₂PCl (1.3 cm³, 7.8 mmol) was dissolved in THF (10 cm³) and cooled in a liquid nitrogen/acetone slurry. Ortho-lithiated N,N-dimethylaniline (1 g, 7.8 mmol) in THF (10 cm³) was added dropwise to the reaction mixture, and the whole was allowed to warm gradually to room temperature and stirred for a further hour, giving a straw coloured solution. The solvent was removed *in vacuo* and then the residue exhausted with DCM (2x5 cm³). The yellow solution was filtered through a short silica plug to remove fine LiCl solids and the solvent removed *in vacuo*. The crude product was recrystallized from the minimum boiling ethanol – once cool, the ethanolic solution was stored at 4 °C. After five days, yellow crystals were isolated, washed with hexanes (5 cm³) and dried *in vacuo* to give 1a as yellow needles (1.175 g, 50% yield)

1a, **1b** and **1d** were purified by recrystallization from boiling ethanol. **1c** was cleaned by heating into solution in ⁿHexane (3cm³ per gram) and filtered before removal of solvent under prolonged vacuum – this was found to remove any polar or ionic impurities as well as trace benzylamine residues. The ¹H and ³¹P NMR spectra were found to match literature values and they were used without further purification.

1a (66% yield)

¹H NMR (400MHz, DCM,20.2°C): δ = 7.38-7.23 (m, aromatic C-H, 11 H), 6.92 (dd, J=8.2Hz, 4.6Hz, aromatic C-H, 1H), 6.85 (t, J=7.3Hz, aromatic C-H, 1H), 6.66 (m, aromatic C-H, 1H), 3.73 (s, OMe, 3H) ³¹P NMR(161.8MHz, DCM,20.2°C) : δ = 16.6

1b (50% yield)

¹H NMR (400MHz, DCM,20.1°C): δ = 7.37-7.19 (m, aromatic C-H, 12H), 6.99 (t, J=7.8Hz, aromatic C-H, 1H), 6.76 (ddd, J=7.3Hz, 3.7Hz, 1Hz, aromatic C-H, 1H), 2.60 (s, NMe₂, 6H) ³¹P NMR(161.8MHz, DCM,20.1°C) : δ = -13.7

1c (73% yield)

¹H NMR (400MHz, DCM,20.5°C): δ = 7.44 (dd, J = 7.3Hz, 4.6Hz, aromatic C-H, 1H), 7.35-7.22 (m, aromatic C-H, 11H), 7.15 (t, J=7.3Hz, aromatic C-H, 1H), 6.92 (dd, J= 7.8Hz, 4.6Hz, aromatic C-H,1H), 3.60 (s, 2H, CH2-NMe₂), 2.01 (s, 6H, NMe₂) ³¹P NMR(161.8MHz, DCM,20.5°C) : δ = -15.7

1d (29% yield)

¹H NMR (400MHz, DCM,20.1°C): δ = 7.34-7.26 (m, aromatic C-H, 5H), 7.22-7.12 (m, aromatic C-H, 4H), 6.96 (t, J=7.3Hz, aromatic C-H, 2H), 6.75 (ddd, J=7.8Hz, 3.2Hz, 1.8Hz, aromatic C-H, 2H), 2.65 (s, NMe₂, 12H)

 ^{31}P NMR(161.8MHz, DCM,20.1°C) : $\delta=-21.8$

Direct reaction of donor phosphines with Ph₂PCl.

Reaction of 1a with Ph₂PCl, Formation of [2a]BAr^F

1a (29mg, 0.1mmol) was dissolved in DCM (0.8cm³) in a J. Young's NMR tube fitted with a d6-DMSO capillary. Ph_2PCI (17µl, 0.1mmol) was added and the ¹H and ³¹P NMR recorded. No new ³¹P resonances can be unambiguously identified above the baseline (there is potential evidence for a doublet at approximately -23 ppm but no corresponding doublet can be located).

Upon addition of NaBAr^F, a pale precipitate formed immediately. The ³¹P NMR spectrum shows only two major signals again corresponding to a phosphinophosphenium species, but no P-P coupling can be resolved, with two broad peaks at 16.4 ppm (fwhh = 380 Hz)and -6.4ppm (fwhh = 300 Hz).

The reaction mixture was filtered and crystal growth attempted by slow diffusion of Et_2O or ⁿhexane into the reaction mixture, but no solid products were isolated.

Reaction of 1b with Ph₂PCl, formation of [2b]BAr^F

1b (31 mg, 0.1 mmol) was placed in a J. Young's NMR tube charged with a d6-DMSO capillary and dissolved in DCM (0.8 cm³). Ph₂PCI (17 μ l, 0.1 mmol) was added, leading to a slight turbidity of the solution. ³¹P NMR showed the formation of a pair of doublets at 35.2 and -23.4 ppm (¹J_{P-P}= 225 Hz) as trace impurities, indicating the formation of Ph₂P(O)PPh₂¹² due to trace H₂O presumably

remaining from recrystalisation of the phosphane. The ${}^{1}H$ NMR shows that the signals for the NMe₂ peak broadened and shifted slightly downfield from 2.60 ppm in the free phosphane to 2.64 ppm.

The reaction mixture was allowed to stand for 24 hours, and the spectra rerecorded – the 31 P is included to show that no further reaction occurred, although a small quantity of white solid (presumably poorly soluble Ph₂P(O)PPh₂) did settle out at the bottom of the NMR tube.

Upon addition of 1 equivalent of NaBAr^F, a fine precipitate developed (NaCl) and the ³¹P spectrum changed significantly to show complete consumption of the starting materials and new P-P coupled species, giving a single product containing two coupled phosphorus environments in quantitative yield. ³¹P NMR shows the formation of a pair of doublets at 13.7 and -8.4ppm (¹J_{P-P}=345Hz)

A similar change is visible in the ¹H where the NMe₂ resonance shifts upfield to 2.02ppm.

The reaction mixture was allowed to settle and the supernatant decanted into a J. Young's Schlenk. Crystal growth was attempted by slow diffusion of ⁿHexane or diethyl ether into DCM. No crystals were obtained, only decomposition products and a sticky oil.

Reaction of 1c with Ph₂PCl, formation of [2c]BAr^F

1c (42mg, 0.14mmol N.B. **1c** is a viscous oil and so chosen as the limiting reagent in determining scale) was introduced to a J. Young's NMR tube fitted with a d6-DMSO capillary. Ph₂PCl (23 μ l, 0.014mmol) was added and the NMR spectra recorded. The ¹H NMR shows distinct changes in the benzylic and NMe₂ signals, both broadening. The benzylic peak shifts downfield to 3.65 ppm whilst the NMe₂ signals are downfield shifted to 2.05 ppm.

The formation of trace $Ph_2P(O)PPh_2$ is again visible. The nature of the trace impurities at 44ppm and 23ppm are unknown. Upon addition of 1 equivalent of NaBAr^F, a fine precipitate formed and once again total consumption of starting materials was observed; the ³¹P NMR contains only two major resonances, corresponding to the desired phosphinophosphenium cation, with doublets at 17.0 ppm and -6.1 ppm, $, {}^{1}J_{P-P} = 335$ Hz.

The reaction is reflected in the ¹H NMR by the benzylic protons shifting upfield to 3.39 ppm and the NMe₂ resonances shifting further upfield to 1.54 ppm.

The solution was allowed to settle and the supernatant decanted into a J. Young's tube. Crystals suitable for single crystal diffraction were grown by slow diffusion of "Hexane into the reaction mixture.

Targeted synthesis of [2c]BAr^F

A larger scale synthesis of $[2c]BAr^{F}$ was performed to permit further analysis. **1c** (0.131 g, 0.41 mmol) and NaBAr^F (0.364 g, 0.41 mmol) were dissolved/suspended in DCM (10 cm³). Ph₂PCl (73 µl, 0.41mmol) was added, resulting in rapid dissolution and formation of a fine precipitate. The reaction mixture was stirred for 20 minutes and then filtered through celite to remove insoluble ionic solids. The solution was concentrated under vacuum until solid began to appear and then warmed back to room temperature and all the solid had redissolved. ⁿHexane was then layered onto the reaction mixture, and large crystals grew by slow diffusion over 5 days. The crystals were isolated, washed with ⁿHexane (5cm³) and dried *in vacuo* to give [**2c**]BAr^F (164mg, 0.12mmol, 29% isolated yield.)

¹H NMR (400MHz, CDCl₃,19.6°C) δ = 7.95ppm (m, aromatic C-H, 1H), 7.74 (s, BAr^F aromatic C-H, 8H), 7.71-7.60 (m, aromatic C-H, 4H), 7.53 (s, BAr^F aromatic C-H, 4H), 7.51-7.41 (m, aromatic C-H, 7H), 7.29 (t, J = 7.8 Hz, aromatic C-H, 4H), 7.13 (dd, J=12.4Hz, 8.2Hz, aromatic C-H, 4H), 7.03 (t, J=8.2Hz, aromatic C-H, 4H), 3.33 (s, CH₂-NMe₂, 2H), 1.51 (s, NMe₂, 6H).

¹³C NMR(100.5MHz, CDCl₃,19.7°C) δ=161.8 (1:1:1:1 q, ¹J_{C-B}=50Hz, BAr^F), 136.8 (s), 135.2 (dd, J_{C-P}=23.3, 5.5Hz), 134.9 (s, BAr^F), 134.4 (s), 133.3 (s), 133.1 (d, J_{C-P}=10.0Hz), 132.6 (s), 129.9 (d, J_{C-P}6.8Hz), 129.8 (d, J_{C-P}=11Hz), 129.0 (q, ¹J_{C-F}=30.1Hz, BAr^F), 126.0(s), 123.2 (s, BAr^F), 120.6 (s), 120.2 (s), 117.6 (s), 63.1 (s, **C**H₂NMe₂), 44.0 (s, N**Me₂**)

³¹P NMR(161.8MHz, CDCl₃,19.4°C) δ=17.5 (d, ¹J_{P-P} = 335Hz), -5.3(d, ¹J_{P-P} = 335Hz). Elemental Analysis: For C₆₅H₄₄BF₂₄NP₂, Calculated C 57.1, H3.24, N1.02. Found C56.9 H3.32 N1.04.

Reaction of 1d with Ph₂PCl, formation of [2d]BAr^F

1d (49mg, 0.14mmol) was dissolved in DCM (0.8cm³) in a J. Young's NMR tube fitted with a d6-DMSO capillary, and Ph₂PCl (24µl, 0.14mmol) added. The ¹H NMR shows minimal significant change from that of the free phosphine.

Upon addition of 1 equivalent of NaBAr^F, a small quantity of pale precipitate formed and began to settle out (NaCl). The solid resulted in very poor shimming for the ¹H NMR, so only broad peaks can be resolved, but the NMe₂ resonance clearly shifts to shift upfield to 2.02ppm, analogous to **1b**. Interestingly, only a single NMe₂ resonance is seen, indicating that either the structure adopted is symmetrical or, more likely, rapid dynamic exchange occurs between apical bound and equatorial NMe₂. This latter process might also contribute to the broad lineshapes observed.

The ³¹P NMR shows once more complete consumption of starting materials and two doublets indicative of the formation of [**3d**]BAr^F, centred at 12.8 ppm and -6.3 ppm, ¹J_{P-P} = 335 Hz. The supernatant was decanted and slow diffusion of hexane attempted to grow crystals, but only degradation products were isolated. Attempts with Et₂O diffusion were also unsuccessful.

Attempted synthesis of AlCl₄ salts, [2b]AlCl₄ and [2c]AlCl₄

Reaction in a J. Young's NMR tube fitted with a d6-DMSO capillary of one equivalent each of either **1b**, Ph₂PCl and AlCl₃ (0.1 mmol scale) or **1c**, Ph₂PCl and AlCl₃ (0.51 mmol scale, triarylphosphane the limiting reagent) in DCM (0.8 cm³) lead to complex mixtures as evidenced by the ³¹P NMR.

In both cases, the ²⁷Al NMR shows formation of $[AlCl_4]^-$ - the slight upfield shift from 104ppm indicative of equilibrium with $[Al_2Cl_7]^-$ arising from effective excess $AlCl_3$, explaining the residual Ph₂PCl visible in the ³¹P despite initial 1:1 stoichiometries.

³¹P

In neither case can clean signals corresponding to the expected tetrachloroaluminate salts be resolved, and despite careful stoichiometric control, there remain appreciable quantities of free Ph₂PCI. Nevertheless, broad signals can be seen where, for the BAr^F salts, well resolved doublets were previously obtained, as well as other minor features. We considered the possibility that, given equilibrium populations of free Ph₂PCI and AlCl₃, the homo-salt arising from Ph₂PCI acting as nucleophile might form, and performed an independent synthesis.

Ph₂PCl (17µl, 0.1mmol) was dissolved in DCM (0.8cm³) in a J. Young's NMR tube charged with a d6-DMSO capillary and AlCl₃ (14mg, 0.1mmol) added, giving a clear solution. The ³¹P shows clean formation of the desired phosphinophosphenium cation, with doublets at 72.8 ppm and and 0.2 ppm with ¹J_{P-P} = 390 Hz. The origin and nature of the minor impurities are not known. The ²⁷Al NMR spectrum shows broad singlets at 102.6ppm and 91.4ppm, indicative of exchange broadening between [AlCl₄]⁻ and [Al₂Cl₇]⁻.

Crucially, none of these doublets correspond to the signals seen in the attempted reactions with **1b** and **1c**. In the absence of any dynamic behaviour apparent in the ²⁷Al for the complex reaction mixtures, we conclude that a complex equilibrium must be in place. Attempts to crystallise [**2b**]AlCl₄ and [**2c**]AlCl₄ by slow diffusion of hexanes into the reaction mixtures produced only oily residues and no crystals were forthcoming.

in situ Synthesis of [2]OTf and [2]GaCl₄ salts

In light of the difficulty in isolating clean BAr^F salts for all but [**2c**]BAr^F despite the crystalline nature of the salts reported by Burford, the synthesis of the undertaken of the triflate and tetrachlorogallate derivatives. Once again, only degradation products could be isolated for the donor-functionalised systems despite the desired salts clearly forming in solution, despite [**2e**]OTf being isolated cleanly as a colourless crystalline solid.

General Synthesis of the Triflate Salts

Phosphine **1** (1mmol) was dissolved in DCM (0.8 cm³) in a J. Young's NMR tube fitted with a d-6 DMSO capillary. To this was added Me₃SiOTf (18 μ l, 1mmol) followed by Ph₂PCl (18 μ l, 1 mmol), with NMR spectra recorded at each stage. No colour change was observed but formation of [**2**]OTf was confirmed by ¹H and ³¹P NMR (below), with concomitant formation of Me₃SiCl (δ 0.43 ppm in the ¹H NMR). For the donor-functionalised systems, removal of solvent produced oily residues from which only degradation products could be found and no desired crystalline products could be isolated. Removal of solvent from [**2e**]OTf produced the literature compound as a colourless solid (see below).

Formation of 2aOTf

Upon addition of Me₃SiOTf to the solution of **1a**, the **1a**'s methyl resonance shows a very slight downfield shift (from δ 3.73 ppm to 3.74 ppm) and broaden, indicating a weak interaction. Upon addition of the Ph₂PCl, complete consumption of Me₃SiOTf is evident with formation of Me₃SiCl

(0.42 ppm), and the methyl resonance moves upfield to δ 3.39 ppm (*cf.* [**2a**]BAr^F, δ 3.42 ppm)

These changes are mirrored in the ³¹P NMR spectra – on addition of the Me₃SiOTf, the phosphane resonance shifts downfield slightly (δ -16.6 ppm to δ -15.8 ppm). On addition of the Ph₂PCl, the formation of [**2a**]OTf is clearly seen by the two P-P coupled peaks (δ 17.1 ppm and δ -6.4 ppm, ¹J_{P-P} = 355 Hz) (cf. [**2a**]BAr^F, δ 16.4 ppm and δ -6.4 ppm). Interestingly, the P-P coupling can be clearly resolved for this system, but not for the equivalent BAr^F salt.

³¹P NMR for the formation of [2a]OTf

Formation of [2b]OTf

Upon addition of Me_3SiOTf to the solution of **1b**, the methyl resonances of **1b** also show a slight downfield shift (from δ 2.60 ppm to 2.63 ppm, larger than for **1a**)and broaden, indicating a weak

interaction. Upon addition of the Ph₂PCl, complete consumption of Me₃SiOTf is evident with formation of Me₃SiCl (0.42 ppm), and the methyl resonances move upfield to δ 2.02 ppm (*cf.* [**2b**]BAr^F, δ 2.02 ppm)

behaviour is observed by the 31P NMR. Upon addition of the Me3SiOTf, the signal for **1b** moves slightly upfield (from δ -13.8 ppm to δ -14.1ppm) and broadens. Upon addition of the Ph₂PCI (trace remaining in the spectrum), complete consumption of 1b occurs and the doublets of [**2b**]OTf clearly form at δ 13.8ppm and δ -8.9 ppm (¹J_{P-P} = 344 Hz), effectively identical to the BAr^F salt.

³¹P NMR for the formation of [**2b**]OTf

in situ formation of [2c]OTf

Me₃SiOTf added

Ph₂PCI added

7

6

Somewhat surprisingly, given the facility with which $[2c]BAr^{F}$ is formed and isolated, the equivalent triflate salt does not form cleanly or easily. On addition of Me₃SiOTf to **1c**, similar behaviour to **1a** and **1b** is seen, with downfield shifts of both the benzylic peak (δ 3.59 ppm to δ 3.68 ppm) and the methyl resonance (δ 2.00 ppm to δ 2.08 ppm). However, on addition of Ph₂PCl, the formation of Me₃SiCl is accompanied by almost total loss of sharp benzylic and methyl signals, and the formation of broad assymetric peaks visible as distortions of the baseline at approximately δ 3.3 ppm and δ 1.5 ppm, the expected peak positions of the [**2c**] cation, as well as multiple minor new unknown products

The ³¹P NMR shows the same phenomenon, with tiny upfield shift of the phosphane resonance on addition of Me₃SiOTf (δ -15.7 ppm to δ -15.8 ppm), but broad unresolved signals after the addition of Ph₂PCI. Collecting many transients of the ³¹P{¹H} NMR improved the signal to noise ratio sufficiently to show the formation of multiple unknown species. It must therefore be concluded that in this case, the triflate anion cannot be regarded as weakly coordinating, and that some subsequent reactivity must be being observed – the ¹⁹F NMR of the reaction mixture shows only the expected singlet at δ -79.2 for the triflate anion, which implicates some rearrangement of the donor phosphane.

Chemical Shift (ppm)

2

³¹P NMR for the formation of [2c]OTf

³¹P{1H} NMR of the reaction mixture to form [**2c**]OTf after addition of Ph2PCI

The broad doublets at δ^{17} ppm and δ^{-8} ppm are probably [**2c**]OTf in exchange with some other species such as the broad signal at δ^{-18} ppm, but no pure solid materials could be isolated to allow definitive characterisation of the products.

in situ Formation of [2d]OTf

[2d]OTf forms in a manner analogous to [2b]OTf – the ¹H NMR shows a small downfield shift of the NMe₂ resonances (δ 2.64 ppm to δ 2.65 ppm) on addition of Me₃SiOTf, followed by an upfield shift to δ 2.02 ppm (*cf.* δ 2.02 ppm for [2d]BAr^F). No inequivalence of the methyl groups is observed, indicating either symmetrical binding or, more probably, rapid exchange on the NMR timescale.

¹H NMR for the formation of [2d]OTf

Similarly, the ³¹P spectra shows the clear formation of two P-P coupled peaks following complete mixing of the three components, with signals at δ 12.8 ppm and δ -6.8 ppm, ¹J_{P-P}=331 Hz (*cf.* [**2d**]BAr^F at δ 12.8 ppm and δ -6.3 ppm, ¹J_{P-P}=335 Hz).

³¹P NMR for the formation of [2d]OTf

Synthesis and isolation of [2e]OTf

To a stirred solution of PPh₃ (140 mg, 0.55 mmol) in DCM (7.5 cm³) was added Me₃SiOTf (97µl, 0.55 mmol) and Ph₂PCl (98 µl, 0.54 mmol). Hexane (15 cm³) was then added forming a fine colourless precipitate that was isolated by filtration, washed with hexane (5 cm³) and dried *in vacuo* to give [**2e**]OTf as a colourless solid (282 mg, 0.473 mmol, 88.5%). The NMR parameters were in good agreement with the literature, with broad peaks in the ³¹P NMR which could nevertheless be resolved into broad doublets with an approximately 340 Hz coupling constant.¹³ A small impurity of of Ph₂P(O)H can be seen arising from *in situ* hydrolysis during sample preparation.

¹H NMR (400MHz, DCM, 18.7°C): δ = 7.83 (t, J = 7.5Hz, 4H), 7.60 (m, 8H), 7.42 (t, J=7.4Hz, 4H), 7.34-7.20 (m, 9H)

 $^{31}P{^{1}H} NMR (161.83MHz, DCM, 18.7^{\circ}C) : \delta = 15.3 \text{ and } -10.6 (^{1}J_{P-P} \sim 340 \text{ Hz}).$

¹⁹F (376MHz, DCM, 18.6°C) : δ =-79.3 ([OTf]⁻).

Elemental Analysis: For $C_{31}H_{25}F_3O_3P_2S$, Calculated C 62.42, H, 4.22. Found C 60.45 H 4.23.

General Synthesis of the [GaCl4] Salts

The tetrachlorogallate salts were all synthesised by the same generic method. Phosphane 1 (1 mmol) was dissolved in DCM (0.8 cm³) in a J. Young's NMR tube fitted with a d6-DMSO capillary. To this was then added Ph_2PCI (18 µl, 1 mmol) followed by $GaCl_3$ (18 mg, 1 mmol) and the NMR spectra recorded. The reaction mixture was then layered with ⁿHexane and crystal growth attempted by slow diffusion. In no cases were solid materials isolated, with oily residues depositing from the reaction mixture.

in situ formation of [2a]GaCl₄

[**2a**]GaCl₄ forms under the described reaction conditions, with ¹H and ³¹P NMR in broad agreement with the BAr^F and triflate salts. However, the formation is apparently extremely sensitive to changes in stoichiometry, with a reaction with an inadvertent slight excess Ph₂PCl showing the formation of of both [**2a**]GaCl₄ and [Ph₂P(Cl)PPh₂]GaCl₄ as well resolved pairs of doublets ([**2a**]GaCl₄ : δ 18.9 ppm, δ -5.8 ppm, ¹J_{P-P}=307 Hz) and [Ph₂P(Cl)PPh₂]GaCl₄ : δ 72.7 ppm, δ 0.4 ppm, ¹J_{P-P}=391 Hz. Literature values¹³ δ 78 and δ 3 ppm, with unresolved coupling emphasising the sensitivity to equilibrium phenomena), whilst limiting the addition of Ph₂PCl to 0.95 equivalents lead instead to the formation of two broad singlets.

As might be expected, the ¹H NMR for the the superstoichiometric reaction is very complicated in the aromatic region, but comparison of the aliphatic regions of the spectra is informative. The OMe resonance for the superstoichiometric system is a sharp signal at δ 3.43 ppm, whilst that of the substoichiometric reaction mixture is downfield at δ 3.49 ppm. This is consistent with the substoichiometric spectrum, in which no free **1a** is observed, arising from a rapid dynamic exchange between free and bound **1a** and leading to the time averaged chemical shift for the methoxy protons between free and bound states, and the loss of P-P coupling.

in situ formation of [2b]GaCl₄

[2b]GaCl4 forms cleanly under the described conditions, with ¹H and ³¹P NMR comparable to those of the salts of other counterions.

¹H NMR of [**2b**]GaCl₄ formed *in situ*

The phosphinophosphenium resonances are sharp doublets at δ 13.8 ppm and δ -8.8 ppm, with ${}^{1}J_{P-P}$ = 344 Hz.

in situ formation of [2c]GaCl₄

As **1c** was isolated as a viscous oil, the experiment was scaled to the mass of **1c** successfully transferred into the NMR tube (57 mg, 0.21 mmol), with 0.21 mmol of the other reagents used. [**2c**]GaCl₄ does not form particularly cleanly, and as for [**2c**]OTf, the mixing results in very broad peaks for the benzyllic and methyl resonances in the ¹H NMR. The GaCl₃ was clearly the limiting reagent with small residual signals for Ph₂PCl and **1c** visible in the ¹H and ³¹P NMR. These are comparatively sharp signals, indicating only slow exchange between free and bound **1c**.

The ³¹P resonances for [**2c**]GaCl₄ are found at δ 17.0 ppm and δ -6.5 ppm respectively (¹J_{P-P}=332 Hz)

in situ formation of [2d]GaCl₄

[2d]GaCl₄ forms under the described reaction conditions, with both the ¹H and ³¹P NMR spectra in agreement with those of the BAr^F and triflate salts.

The phosphinophosphenium signals are seen at δ 12.8 ppm and δ -6.6 ppm with a ${}^{1}J_{P-P}$ = 335 Hz.

Examination of the degradation products of [2b]OTf

In light of the continued inability to obtain solid products despite the crystalline nature of the compounds reported by Burford, we chose to examine the degradation of [**2b**]OTf in greater detail due to its easy formation.

Degradation of [2b]OTf on loss of solvent

1b (10mg, 0.03mmol) was dissolved in DCM (0.8 cm³) in a J. Young's NMR tube charged with a d6-DMSO capillary, to which was added first Ph₂PCl (5 μ l, 0.03mmol) and then Me₃SiOTf (5 μ l, 0.03 mmol), after which the NMR spectra were recorded, showing clean formation of [**2b**]OTf. The solvent was removed *in vacuo* and then the sticky residue redissolved in DCM (0.8 cm³) and the NMR spectra rerecorded, showing no significant change save a tiny new resonance at δ -27.0 ppm.

The reaction mixture was transferred to a J. Young's Schlenk and the solvent slowly removed under a flow of argon, but no crystalline materials were isolated, only a sticky residue.

Degradation of [2b]OTf on exposure to hexane

The synthesis was repeated as above, and the **[2b]**OTf transferred to a Schlenk flask and the solvent removed *in vacuo* to give a sticky oil which was washed with ⁿHexane (2.5 cm³) with stirring to. After drying in vacuo, the resulting colourless wax was redissolved in DCM (0.8 cm³), transferred to a J. Young's NMR tube charged with a d6-DMSO capillary and the NMR spectra recorded.

The ³¹P NMR showed complete loss of [**2b**]OTf, and the formation of two new major products at δ 33.6 ppm and δ -26.2 ppm, with a minor signal at δ -40.2 ppm, confirming total destruction of [**2b**]OTf on exposure to hexane and the absence of hydrolysis due to the lack of Ph₂P(O)PPh₂.¹²

The experiment was repeated once more in a single vessel. Once the [**2b**]OTf had formed as above, confirmed by NMR, the solvent was removed *in vacuo* and ⁿHexane (1 cm³) added to the tube. No dissolution was observed, and the mixture was allowed to stand for 4 hours, after which the solvent was again removed *in vacuo*, DCM (0.8 cm³) added and the NMR spectra recorded.

$^{31}P{^{1}H} NMR$ for [**2b**]OTf after exposure to ⁿHexane and Et₃N

The ³¹P NMR clearly shows the formation of three major new phosphorus containing species, with broad signals at (small) δ 29.7 ppm, (small) δ -16.4 ppm and (strong) δ -26.8 ppm, as well as numerous minor components, with only trace [**2b**]OTf remaining. Upon addition of the Et₃N, these first two signals sharpen and shift slightly to δ 29.4 ppm, δ -16.0 ppm, whilst the other peak significantly to δ -13.8 ppm, with relative integrals (by ³¹P NMR) of 2:3:6. This latter is the chemical shift expected for free **1b**, confirmed by the change in the Me resonance in the ¹H NMR from δ 3.39 ppm after exposure to ⁿHexane to δ 2.55 ppm after Et₃N, and the independent synthesis of [**1b**-H]OTf below. The comparison of the integrals and confirmation of the formation of protonated phosphane indicates that the phosphacations are reacting with something to protonate the donor moiety. Hydrolysis can be ruled out as this transformation is complete rather than partial, and none of the residual Ph₂PCl is consumed and no Ph₂P(O)Ph₂¹² is formed, nor is any phosphorus –phosphorus coupling observed between the two new signals. We therefore conclude that **1b** is unable to stabilise the [Ph₂P]⁺ cation sufficiently in non-polar environments and the likelihood is some form of

phospha-Friedel-Krafts reactivity. We were unable to definitively characterise the remaining degradation products, however. The difference in product distribution seen in the degradation *via* washing (which would have removed any ⁿhexane soluble products) *vs* that in the NMR tube is believed to be due to the more intimate mixing afforded by washing whilst stirring.

Direct Synthesis of [1b-H]OTf

1b (10mg, 0.03mmol) was dissolved in DCM (0.8 cm³) in a J. Young's NMR tube charged with a d6-DMSO capillary, to which was added first Me₃SiOTf (5 μ l, 0.03 mmol) then EtOH (2 μ l, 0.03 mmol) to generate HOTf *in situ* with NMR spectra recorded at each stage. The formation of the broad peak at δ -26.7 ppm can clearly be seen. Upon addition of Et₃N (5 μ l, 0.04 mmol), complete regeneration of free **1b** was observed.

 31P{1H} NMR of directed synthesis of [1b-H]OTf

 1b

 1b + Me₃SiOTf + EtOH

 1b + Me₃SiOTf + EtOH

 1b + Me₃SiOTf + EtOH

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 Chemical Shift (ppm)

Comparison of the ³¹P and ³¹P{¹H} NMR for [**1b**-H]OTf confirms, as expected, protonation on the anilide moiety rather than at phosphorus, with no evidence for ${}^{1}J_{P-H}$ coupling.

Variable Temperature studies on [2c]BArF

Despite the asymmetry of [**2c**]BAr^F in the crystal structure, both methyl groups are equivalent in the ¹H NMR at room temperature. Low temperature NMR studies were performed upon a sample of crystalline[**2c**]BAr^F in CDCl₃, but no splitting of the NMe₂ signal can be seen even down to -50°C, indicating that the species is highly fluxional in solution and that any barriers to interconversion of the phenyl rings from apical to equatorial must be low.

As the temperature is decreased, the benzylic peaks broaden and shift slightly downfield, whilst the NMe₂ resonances likewise broaden but shift downfield slightly. No new peaks become apparent and the aromatic region likewise shows no loss of symmetry.

For the ³¹P spectra over the same range (only the extremes are shown), the upfield resonance shifts slowly further upfield and broadens slightly, but no other changes are observed.

Competition studies with Ph₃P

Initial competition studies were performed using *in situ* generated phosphinophosphenium species. **[2b]BAr^F + Ph**₃P

1b (31mg, 0.1mmol) and NaBAr^F (89mg, 0.1mmol) were combined in a J. Young's NMR tube charged with a d6-DMSO capillary, and suspended in DCM (0.8cm^3). Ph₂PCI (17μ l, 0.1mmol) was added, resulting in rapid dissolution and formation of a pale precipitate. The ¹H and ³¹P NMR were recorded. Ph₃P (25mg, 0.1mmol) was added and the spectra reacquired.

The ¹H NMR clearly shows that the NMe₂ resonances move downfield from 2.02ppm to 2.49ppm – closer to but not reaching the value for the free phosphane of 2.60ppm. The ³¹P changes more dramatically – the resonances for [**2b**]BAr^F disappear completely and three new resonances are seen – two moderately sharp peaks at 4.2 ppm and -10.3 ppm, and a much broader peak at approximately -7 ppm. These correspond neither to any of the free phosphanes nor either of the potential phosphinophosphenium ions.

This small number of peaks, none clearly identifiable as any expected product, is indicative of extremely rapid equilibrium.

[2e]BAr^F + 1b

To confirm that this was the case, the equivalent reaction was performed this time approaching the equilibrium from the other direction. Ph₃P (25mg, 0.1mmol) and NaBAr^F (89mg, 0.1mmol) were combined in a J. Young's NMR tube fitted with a d6-DMSO capillary. DCM (0.8cm³) was added, followed by Ph_2PCI (17µl, 0.1mmol) and the ¹H and ³¹P NMR recorded, showing clearly the clean formation of [**2e**]BAr^F as evidenced by singlets in the ³¹P NMR at 13.7 ppm and -10.1 ppm (literature values being 13 ppm and -12 ppm respectively for [2e]GaCl₄)¹³, confirming that this is not one of the species visible in the above competition experiment.

1b (31mg, 0.1mmol) was then added, and the spectra rerecorded.

The ³¹P NMR clearly shows that the same equilibrium mixture is attained, with slight peak position differences likely arising from minor concentration differences during formation.

In all these cases, the presence of capillary and NaCl precipitate gave comparatively broad linewidths, and the d6-DMSO capillary rendered variable temperature studies to low temperatures infeasible.

[2c]BAr^F + Ph₃P Variable Temperature Study

The isolation of pure, crystalline $[2c]BAr^{F}$ made it possible to attempt a variable temperature study using this with Ph₃P to try to freeze out the equilibrium. One equivalent each of $[2c]BAr^{F}$ and Ph₃P were combined in a J. Young's NMR tube in CDCl₃, giving a room temperature spectrum showing complete loss of coupling between the two phosphorus centres and signals not corresponding to either free phosphane nor either [2c] or [2e].

On cooling, the acceptor resonance sharpens (much as seen for [**2c**]BAr^F itself) and the donor resonance shifts upfield, but the otherwise broad peak sharpens and at -50°C is centred at -15.9 ppm, with the downfield pair at 12.1ppm and -11.9ppm respectively. These are therefore attributed to free [**2e**]BAr^F and **1c**. This is in agreement with the computed free energies which predict that [**2e**] is more stable than [**2c**].

Variable Temperature Studies with Ph₂PI

Synthesis of Ph₂PI: Ph₂PI was synthesised by modified literature preparation.¹⁴ Ph₂PCI (1 cm³, 5.6 mmol) was added to a suspension of KI (4.48 g, 27 mmol) in DCM (5 cm³) and stirred rapidly at room temperature for 4 days, during which time the reaction mixture developed a fine, colourless precipitate and became yellow in colour. The reaction mixture was filtered directly into a Schlenk flask charged with a further quantity of KI (3.3 g, 20 mmol) and stirred for a further ten days. The
reaction mixture was then filtered and the solvent removed *in vacuo* to give crude Ph_2PI as a redorange oil (0.802 g, 2.5 mmol, 46% yield). ¹H NMR (400MHz, DCM, 20.9°C): δ = 7.65 (bm, aromatic C-H, 4H), 7.36 (bm, aromatic C-H, 6H). ³¹P NMR (161.8MHz, DCM, 20.9°C) : δ = 39.4 (Literature value 40.3).

The isolated red oil was found to approximately 85% pure by ³¹P NMR (see below), containing traces of Ph_2PCI starting material and some hydrolysis products, and deemed to be sufficient for further studies as these impurities do not interact with the species of interest.

VT withPPh₃ and Ph₂PI

Ph₂PI (60 mg, 1.9 mmol) was dissolved in CDCl₃ (0.8cm³) in a J. Young's NMR tube and Ph₃P (51 mg, 1.9 mmol) added, with no attendant colour change. The ³¹P NMR spectrum showed clear evidence of a dynamic equilibrium present with changes in chemical shift of both species (*vide infra*), and further variable temperature NMR studies were performed.

³¹P VT

The ³¹P NMR shows a dramatic difference between the NMR of the free species and the mixed Ph₂PI and Ph₃P – the signal for Ph₃P is shifted downfield from δ = -5 to δ -0.1 ppm on mixing, whilst the signal for Ph₂PI shifts upfield from δ 39.4 ppm to δ 25.3 ppm, with both broadening considerably, indicative of a dynamic equilibrium between free phosphanes and some other species. On cooling, the peaks broaden and then sharpen moving smoothly to δ 15.0ppm for the "Ph₃P" signal and δ -13.6ppm for the "Ph₂PI" signal, clearly corresponding to the signals for [**2e**]. The non-participation of the impurities in the Ph₂PI can be seen by the temperature invariance of the associated signals. Interestingly, at no point is any intermediate identifiable corresponding to the un-ionised adduct predicted by DFT. However, as this system is in the fast exchange regime at all temperatures, it is not entirely surprising that no such intermediate can be spectroscopically observed or resolved.

In contrast to the ³¹P NMR spectra, there's very little to be seen in the ¹H VT NMR data – the peaks spread out slightly, but given that the transition is from simple phenyl rings in one species to simple phenyl rings in another, no real conclusions may be drawn.

VT of 1b and Ph_2PI

 Ph_2PI (65 mg, 2.1 mmol) was dissolved in a J. Young's NMR tube in $CDCI_3$ (1 cm³) and **1b** (64 mg, 2.1 mmol). The solution was then studied by variable temperature NMR between 20 °C and -60 °C.

The existence of an equilibrium is suggested by the broadening of the NMe₂ resonance in the ¹H NMR, though no significant upfield shift is observed. On cooling, however, the NMe₂ resonance moves upfield and sharpens to until at -60 °C it rests at δ = 1.79 ppm (*cf.* 2.02ppm for [**2b**]BAr^F at 20 °C.

The non-interference of the impurities in the Ph₂PI can be seen as they remain unchanged across the

temperature range of interest. In this case, indicating both a more thermodynamically stable product and a more rigid P-P bond, coalescence is achieved at only +0 °C, with the peaks for the ionic P-P adduct resolved poorly at -10°C, well at -20 °C and with the P-P coupling resolved at -30 °C. The pair of doublets δ =13.7ppm and δ -12.7 ppm, ¹J_{P-P} = 337 Hz is assigned to the formation of [**2b**]I

VT of 1c and Ph₂PI

Solutions of **1c** (91mg, 0.28 mmol) in $CDCl_3$ (1 cm³) and Ph_2PI (124mg, 4 mmol) in $CDCl_3$ were prepared. Aliquots of the triarylphoshane solution (0.5cm₃) and diaryliodophoshane solution (0.4cm³) were combined in a J. Young's NMR tube to give an approximately equimolar mixture, which was then studied by variable temperature NMR between 20 °C and -60 °C.

No significant change in ¹H NMR resonances are observed upon mixing at RT, and only slight line broadening is in evidence in the ³¹P NMR spectrum, indicating that whilst an equilibrium has been established in fast exchange, the starting materials are the major component. Upon cooling, both benzylic CH₂ and NMe₂ resonances shift upfield in the ¹H NMR, approaching the peak positions expected for [**2c**]. Likewise, the peaks in the ³¹P broaden on cooling and begin to approach the peak positions expected for [**2c**]. Unlike [**2b**], however, no P-P coupling can be resolved until -60 °C, and signals in both the ¹H and ³¹P at that temperature are broad, indicating that significant exchange is ongoing. This does correlate qualitatively with the predicted stability of [**2b**] vs [**2c**] from the computational studies.

The non-participation of the residual Ph_2PCI and Ph_3PO impurities in the Ph_2PI can clearly be seen as they are effectively unchanged with temperature down to -60 °C.

Crystallography

Crystal Structure for [2c]BAr^F

Single crystals were mounted on nylon loops and X-ray diffraction data were recorded on an Agilent Super Nova Dual Diffractometer with Cu-K α radiation ($\lambda = 1.5418$ Å) at 150 K. Unit cell determination, data reduction and absorption corrections were carried out using CrysAlisPro¹⁵. The structure was solved by direct methods and refined by full matrix least squares on the basis of F² using SHELX 2013¹⁶ within the OLEX2 GUI¹⁷. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were included using a riding model. Significant disorder was evident about the CF₃ groups of the counterion, leading to minor issues with atomic displacement parameters with these moieties. However, these do not affect the structural interpretation of the cation.

Table 1 Crystal data and structure refinement for [2c]BArF.Identification codexstr0487Empirical formula C65H44BF24NP2Formula weight1367.76Temperature/K150(1)Crystal systemtriclinicSpace groupP-1a/Å13.06366(17)b/Å13.20669(16)

c/Å 19.4224(2) α/° 103.8699(11) β/° 107.3045(11) γ/° 91.5968(10) Volume/Å3 3088.12(7) Ζ 2 1.471 pcalcg/cm3 μ/mm^{-1} 1.671 F(000) 1384.0 Crystal size/mm3 0.1 × 0.04 × 0.01 Radiation CuK α (λ = 1.54184) 20 range for data collection/° 6.934 to 147.304 Index ranges $-16 \le h \le 16$, $-16 \le k \le 16$, $-24 \le 1 \le 23$ Reflections collected 51501 Independent reflections 12249 [Rint = 0.0274, Rsigma = 0.0216] Data/restraints/parameters 12249/0/867 Goodness-of-fit on F2 1.045 Final R indexes [I>= 2σ (I)] R1 = 0.0691, wR2 = 0.1847 Final R indexes [all data] R1 = 0.0781, wR2 = 0.1930 Largest diff. peak/hole / e Å-3 1.16/-0.71 Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å 2×103) for [2c]BAr^F. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor. Atom x У z U(eq) 6528.4(5) 1899.8(5) 2651.9(4) 27.98(16) Ρ1 P2 5728.5(6) 785.9(6) 1525.7(4) 33.95(17) 446(2) 2883.5(15) 43.3(6) Ν1 4915(2) C1 2686(2) 2966.1(15) 32.7(6) 5553(2) C2 5875(3) 3290.6(17) 38.6(6) 3760(2) 52.0(8) C3 3577(2) 5209(3) 4410(3) C4 4212(3) 3547(2) 3999(3) 61.7(10) C5 3880(3) 56.3(9) 2943(3) 3233(2) С6 4534(2) 2264(3) 2937.3(17) 40.9(7) C7 4121(3) 1119(3) 2611(2) 46.7(7) C8 5090(3) 533(3) 3678(2) 57.4(9) С9 57.1(9) 4590(3) -654(3) 2463(2) 2799(2) C10 7552(2) 2592.0(15) 31.0(5) C11 7266(2) 3549(2) 2189.7(16) 34.7(6) C12 8060(3) 4200(2) 2123.8(18) 41.6(7) C13 9138(3) 4103(2) 2445(2) 44.6(7) C14 9426(2) 3363(2) 2836.6(19) 43.2(7) C15 8640(2) 2709(2) 2919.6(17) 36.0(6) C16 7228(2) 1289(2) 3372.9(16) 33.2(6) C17 7565(3) 307(3) 3216(2) 51.7(8) C18 8142(4) -93(3) 3800(2) 72.0(13) C19 8373(4) 476(3) 4528(2) 64.3(10) C20 8052(3) 1460(3) 4686(2) 54.5(9) C21 7479(3) 1871(2) 4107.8(18) 43.8(7) C22 6885(2) 161(2) 1338.7(16) 37.7(6) C23 -929(3) 49.3(8) 6758(3) 1186(2) C24 7573(3) -1509(3) 1045(3) 63.7(10) C25 8516(3) -1010(3) 1045(2) 61.9(10)

C26	8648(3)	73(3) 1186(2	2) 50.5(8	3)
C27	7841(2)	661(3)	1333.2(17)	40.2(6)
C28	5444(2)	1761(2)	981.9(16)	38.3(6)
C29	5977(3)	1917(3)	481.7(18)	45.2(7)
C30	5688(3)	2677(3)	95(2) 54.4(9	9)
C31	4875(3)	3282(3)	199(2)	53.8(8)
C32	4319(3)	3109(3)	669.7(19)	49.3(8)
C33	4591(2)	2348(3)	1053.3(17)	41.2(7)
F1	5510.7(16)	4252.6(18)	8866(1)	54.1(5)
F2	4224(2)	3034.1(18)	8262.8(13)	66.6(6)
F3	4129.5(19)	4532(2)	8040.7(13)	67.3(6)
F4	3477(2)	1988(5)	5467.7(17)	183(3)
F.5	4767(3)	1259(2)	5260.0(13)	91.3(9)
-0 F6	4588(4)	2726(3)	5089 5(15)	123 7(15)
F7	7576(4)	93(4) 9097(2	2) 89 6 ([*]	18)
F 8	9245(4)	497 (5)	9594(2)	84 0(13)
го го	9243 (4) 8192 (4)	1666(3)	9642(2)	69.8(11)
F 9 F 1 0	0192(4)	-1502 4(10)	9042(2)	112 5(12)
FIU E11	0//1(4)	-1302.4(10)	6609.4(19)	112.0(13)
F11 10	9625(4)	- 500 (5)	6506(3)	156(2)
FIZ	8008(4)	-853(3)	6062.2(19)	155(2)
FI3	7103(2)	4/51(3)	5116.6(16)	90.6(10)
F14	8321(2)	4623(2)	4629.5(14)	//.1(/)
F15	8485(4)	5887(2)	5555(2)	$\perp / \perp (3)$
F16	11278(2)	2315(2)	5677.0(14)	71.5(7)
F17	11867.3(15)	2759.7(19)	6866.1(13)	59.5(6)
F18	11990.3(17)	3884(2)	6262.2(18)	79.0(8)
F19	7778(2)	7124(2)	8517(3)	154(2)
F20	8965(4)	7716(2)	9456(2)	141.3(18)
F21	9220(5)	7699(3)	8483(4)	201(3)
F91	12380.9(16)	4804(3)	9340.8(14)	86.6(9)
F92	11651.1(17)	4037(2)	9916.6(15)	72.9(7)
F93	11994(2)	5681(2)	10288.5(15)	95.9(10)
C34	6962(2)	3223.9(19)	7230.7(14)	26.5(5)
C35	6451(2)	3579.5(19)	7770.7(14)	26.9(5)
C36	5335(2)	3475(2)	7599.8(15)	28.6(5)
C37	4676(2)	3022(2)	6873.1(16)	32.5(6)
C38	5161(2)	2668(2)	6331.7(15)	34.4(6)
C39	6280(2)	2755(2)	6508.5(15)	30.4(5)
C40	4812(2)	3829(2)	8190.9(17)	36.2(6)
C41	4477(3)	2179(3)	5538.7(18)	51.6(8)
C42	8483.2(19)	2087(2)	7642.3(15)	27.5(5)
C43	8420(2)	1931(2)	8319.7(15)	30.4(5)
C44	8463(2)	950(2)	8463.5(16)	32.6(6)
C45	8592(2)	81(2) 7938.0	5(17) 34.8(6	5)
C46	8654(2)	214(2)	7267.1(17)	33.5(6)
C47	8595(2)	1200(2)	7122.5(15)	30.0(5)
C48	8362(3)	803(2)	9181.5(17)	41.5(7)
C49	8773 (3)	-699(2)	6680(2)	46.0(7)
C50	8752(2)	3402.7(19)	6795.5(14)	27.4(5)
C51	8257(2)	3992(2)	6304.4(16)	31.8(5)
C52	8731(2)	4268(2)	5811.8(17)	37.8(6)
C53	9732(2)	3974 (3)	5796.7(18)	40.7(7)
C54	10250(2)	3404(2)	6285.7(17)	35.5(6)
	/	- · · · - /	• • \ • • /	/ /

C55	9771(2)	3116(2)	6770.1(16)	30.6(5)
C56	8166(3)	4912(3)	5301(2)	53.2(9)
C57	11337(3)	3092(3)	6271(2)	46.6(8)
C58	8925(2)	4215(2)	8159.3(14)	27.0(5)
C59	9927(2)	4148(2)	8658.2(15)	30.2(5)
C60	10553(2)	5026(2)	9182.9(15)	33.1(6)
C61	10191(2)	6010(2)	9232.1(16)	36.3(6)
C62	9196(2)	6096(2)	8746.7(16)	34.5(6)
C63	8582(2)	5218(2)	8220.5(15)	28.4(5)
C64	11640(2)	4909(3)	9680.8(17)	42.5(7)
C65	8797(3)	7153(2)	8778(2)	45.2(7)
B1	8276(2)	3222(2)	7453.5(16)	26.5(5)
F9A	7511(12)	1208(15)	9278(7)	87(4)
F8A	9177(10)	1232(12)	9720(5)	72(3)
F7A	8253(16)	-169(8)	9160(8)	81(5)

Table 3 Bond Lengths for [2c]BAr^F.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
P1	P2	2.2477(9)	F13	C56	1.324(4)
P1	C1	1.818(3)	F14	C56	1.346(5)
P1	C10	1.812(3)	F15	C56	1.273(5)
P1	C16	1.808(3)	F16	C57	1.329(4)
P2	C22	1.830(3)	F17	C57	1.338(4)
P2	C28	1.832(3)	F18	C57	1.339(4)
Nl	C7	1.447(5)	F19	C65	1.271(4)
Nl	C8	1.467(4)	F20	C65	1.299(5)
N1	С9	1.465(4)	F21	C65	1.232(4)
C1	C2	1.403(4)	F91	C64	1.318(4)
C1	C6	1.410(4)	F92	C64	1.336(4)
C2	С3	1.379(5)	F93	C64	1.311(4)
С3	C4	1.376(6)	C34	C35	1.401(4)
C4	C5	1.381(6)	C34	C39	1.398(4)
C5	C6	1.397(5)	C34	В1	1.642(4)
C6	C7	1.507(5)	C35	C36	1.391(4)
C10	C11	1.396(4)	C36	C37	1.391(4)
C10	C15	1.395(4)	C36	C40	1.493(4)
C11	C12	1.383(4)	C37	C38	1.379(4)
C12	C13	1.384(5)	C38	C39	1.393(4)
C13	C14	1.372(5)	C38	C41	1.503(4)
C14	C15	1.393(4)	C42	C43	1.405(4)
C16	C17	1.375(4)	C42	C47	1.393(4)
C16	C21	1.385(4)	C42	В1	1.637(4)
C17	C18	1.391(5)	C43	C44	1.388(4)
C18	C19	1.371(6)	C44	C45	1.392(4)
C19	C20	1.370(5)	C44	C48	1.496(4)
C20	C21	1.390(5)	C45	C46	1.382(4)
C22	C23	1.393(4)	C46	C47	1.396(4)
C22	C27	1.399(4)	C46	C49	1.495(4)
C23	C24	1.383(5)	C48	F9A	1.291(11)
C24	C25	1.382(6)	C48	F8A	1.252(10)
C25	C26	1.386(6)	C48	F7A	1.277(10)
C26	C27	1.385(5)	C50	C51	1.396(4)

C28	C29	1.400(4)	C50	C55	1.407(4)
C28	C33	1.397(4)	C50	B1	1.639(4)
C29	C30	1.389(5)	C51	C52	1.392(4)
C30	C31	1.380(6)	C52	C53	1.382(4)
C31	C32	1.378(5)	C52	C56	1.501(4)
C32	C33	1.383(5)	C53	C54	1.383(4)
F1	C40	1.331(4)	C54	C55	1.389(4)
F2	C40	1.342(4)	C54	C57	1.496(4)
F3	C40	1.328(4)	C58	C59	1.397(4)
F4	C41	1.283(4)	C58	C63	1.401(4)
F5	C41	1.321(5)	C58	B1	1.644(4)
F6	C41	1.294(5)	C59	C60	1.392(4)
F7	C48	1.316(5)	C60	C61	1.387(4)
F8	C48	1.330(5)	C60	C64	1.498(4)
F9	C48	1.338(5)	C61	C62	1.385(4)
F10	C49	1.295(4)	C62	C63	1.387(4)
F11	C49	1.271(4)	C62	C65	1.498(4)
F12	C49	1.279(5)			

Table 5 Bond Angles for [2c]BAr^F.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	P1	P2	110.52(9)	C44	C43	C42	122.0(3)
C10	P1	P2	109.89(9)	C43	C44	C45	120.6(3)
C10	P1	C1	107.12(13)	C43	C44	C48	120.8(3)
C16	P1	P2	114.99(10)	C45	C44	C48	118.6(2)
C16	P1	C1	108.97(13)	C46	C45	C44	118.5(2)
C16	P1	C10	104.95(13)	C45	C46	C47	120.6(3)
C22	P2	P1	100.88(10)	C45	C46	C49	120.4(3)
C22	P2	C28	106.73(14)	C47	C46	C49	118.9(3)
C28	P2	P1	97.81(10)	C42	C47	C46	122.2(3)
С7	N1	C8	110.8(3)	F7	C48	F8	105.0(4)
С7	N1	С9	111.6(3)	F7	C48	F9	104.9(4)
С9	N1	C8	109.1(3)	F7	C48	C44	114.1(3)
C2	C1	P1	117.0(2)	F8	C48	F9	103.8(4)
C2	C1	C6	119.2(3)	F8	C48	C44	112.9(3)
C6	C1	P1	123.6(2)	F9	C48	C44	114.9(3)
С3	C2	C1	121.2(3)	F9A	C48	C44	108.0(5)
C4	С3	C2	119.6(3)	F8A	C48	C44	111.1(5)
С3	C4	C5	120.3(3)	F8A	C48	F9A	110.1(11)
C4	C5	C6	121.6(3)	F8A	C48	F7A	108.1(10)
C1	C6	С7	123.3(3)	F7A	C48	C44	111.2(6)
С5	C6	C1	118.1(3)	F7A	C48	F9A	108.3(11)
С5	C6	C7	118.5(3)	F10	C49	C46	113.7(3)
Nl	C7	C6	112.0(3)	F11	C49	F10	107.0(4)
C11	C10	P1	120.7(2)	F11	C49	F12	104.3(5)
C15	C10	P1	119.8(2)	F11	C49	C46	113.2(3)
C15	C10	C11	119.5(2)	F12	C49	F10	104.9(4)
C12	C11	C10	119.9(3)	F12	C49	C46	112.8(3)
C11	C12	C13	120.4(3)	C51	C50	C55	115.8(2)
C14	C13	C12	120.1(3)	C51	C50	B1	122.2(2)
C13	C14	C15	120.5(3)	C55	C50	B1	121.4(2)
C14	C15	C10	119.6(3)	C52	C51	C50	122.5(3)

C17	C16	P1	122.6(2)	C51	C52	C56	120.2(3)
C17	C16	C21	119.7(3)	C53	C52	C51	120.6(3)
C21	C16	P1	117.6(2)	C53	C52	C56	119.2(3)
C16	C17	C18	119.4(3)	C52	C53	C54	118.2(3)
C19	C18	C17	120.9(4)	C53	C54	C55	121.2(3)
C20	C19	C18	119.8(3)	C53	C54	C57	118.1(3)
C19	C20	C21	119.8(3)	C55	C54	C57	120.7(3)
C16	C21	C20	120.3(3)	C54	C55	C50	121.7(2)
C23	C22	P2	113.9(2)	F13	C56	F14	101.7(3)
C23	C22	C27	119.1(3)	F13	C56	C52	112.6(3)
C27	C22	P2	127.0(2)	F14	C56	C52	112.0(3)
C24	C23	C22	120.5(3)	F15	C56	F13	110.6(4)
C25	C24	C23	120.0(4)	F15	C56	F14	106.1(4)
C24	C25	C26	120.1(3)	F15	C56	C52	113.2(3)
C27	C26	C25	120.3(3)	F16	C57	F17	106.0(3)
C26	C27	C22	120.0(3)	F16	C57	F18	106.8(3)
C29	C28	P2	125.0(3)	F16	C57	C54	112.2(3)
C33	C28	P2	116.3(2)	F17	C.5.7	F18	105.5(3)
C33	C28	C29	118.6(3)	F17	C57	C54	113.2(3)
C30	C29	C28	120.0(3)	F18	C57	C54	112 6(3)
C31	C30	C29	120.0(3)	C 5 9	C58	C63	112.0(3)
C32	C31	C30	120.1(3) 120.0(3)	C59	C58	800 B1	122 2(2)
C31	C32	C33	120.0(3) 120.2(3)	C63	C58	B1	122.2(2) 121.0(2)
C32	C33	C28	120.6(3)	C 60	C59	C58	122.0(2) 122.1(3)
C35	C34	B1	121.8(2)	C59	C 60	C64	$122 \cdot 1 (3)$ $119 \cdot 5 (3)$
C39	C34	C35	121.0(2) 115.9(2)	C61	C 60	C59	120.5(3)
C30	C34	с J J	121.8(2)	C61	C 60	C64	120.3(3)
C36	C35	C31	121.0(2) 122.1(2)	C62	C61	C60	119.9(3)
C35	C36	C37	$122 \cdot 1(2)$ $120 \cdot 7(2)$	C61	C62	C 6 3	120.7(3)
C35	C36	C10	120.7(2)	C61	C62	C65	120.7(3)
C33	C36	C40	121.1(2)	CGI	C 6 2	C05	1100(3)
C38	C37	C36	110.3(2)	C 6 2	C63	C 5 8	122 1(2)
C30	C30	C30	120.2(2)	C02	C03	C30 E02	122.1(2)
C37	C30	C39	120.9(3)	Г 91 〒01	C 6 4	r 92 C 6 0	103.0(3)
C30	C30	C41	119.0(3)	E 91	C64	C60	113.1(2)
C39	C30	C41 C24	119.2(3)	F92 F02	C64	C0U E01	112.0(2)
C30 E1	C39	C34 E2	122.1(2)	E YS	C64	F91 E02	106.3(3)
Г I 121	C40	FZ C26	100.0(3)	E YS	C64	E 92	103.4(3)
F I E O	C40	036	113.0(2)	E95	064	C00	113.3(3)
FZ ED	C40	C36	111.9(2)	F19 E10	C 6 5	FZU CCC	100.5(4)
F 3	C40	F L	106.8(3)	F19 E20	C65	062	114.1(3)
F 3	C40	FZ GDC	105.3(3)	FZU DO1	065	C62	112.8(3)
F3	C40	C36	112.5(2)	FZI DO1	065	F19 700	108.9(5)
E'4	C41	F.S	104.4(4)	FZI DO1	065	FZU	105.1(4)
F 4	C41	F 0 0 2 0	110.0(4)	FZI	C65	C62	114.2(3)
E'4	C41	C38	113.3(3)	C34	BI	058	112.6(2)
E.D		C38 TF	$\perp \perp \angle . 3 (3)$	C4Z	BT BT	C34	112 7(0)
F.P	C41	F.2	LUJ.J(J)	C42	BT BT	C50	110 (2)
E O	C41	C38	$\perp \perp \angle \cdot \angle (3)$	C4Z	BT BT	028	110 0(0)
C43	C42	BT	120.3(2)	C50	BT BT	C34	112.9(2)
C47	C42	C43	116.2(2)	C50	ΒT	C58	101.74(19)
C47	C42	BI	123.1(2)				

Table	8 Atomic Oco	cupancy for	xstr0487.			
Atom	Occupancy	Atom	Occupancy		Atom	Occupancy
F7	0.75	F8 0.75	F9	0.75		
F9A	0.25	F8A 0.25	F7A	0.25		

Computational SI

Calculations were performed using the Gaussian09¹⁸suite of programmes. Structures were preoptimised at the HF/3-21G level followed by optimisation at the M06-2X/6-311+G(d,p) level with PCM(Dichloromethane) solvation¹⁹. NBO calculations and NAO Wiberg Bond Index determination were performed using NBO 3.1²⁰ Mayer Bond indices²¹ and Mayer's Fuzzy Bond Indices²² were calculated using Multiwfn.²³ The Mayer Bond Indices are included for reference only and should not be interpreted as chemically meaningful – the use of diffuse functions to model the π -rich species makes the conventional Mayer bond index formulation inapplicable.²⁴ The Fuzzy bond indices were used to describe the nature of bonding in the compounds as they show stronger correlation between changes in bond index and bond length than the NAO-adjusted Wiberg Bond Indices. In all cases, structures were confirmed as minima by frequency analysis and the absence of imaginary frequencies. Full Cartesian coordinates for the optimised geometries are provided below.

Ph₂PCl

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	1.253392		-0.103896
2	6	0	2.391024	-1.994059	0.620242
3	6	0	0.485674	-2.613900	-0.723084
4	6	0	2.740860	-3.335795	0.738587
5	1	0	3.002654	-1.239959	1.103427
6	6	0	0.833793	-3.953815	-0.594664
7	1	0	-0.394798	-2.342892	-1.295030
8	6	0	1.962068	-4.318001	0.135593
9	1	0	3.619636	-3.611231	1.309763
10	1	0	0.222787	-4.713847	-1.067046
11	1	0	2.231432	-5.362780	0.234426
12	6	0	1.368573	0.875258	1.209606
13	6	0	2.196975	1.997386	1.205757
14	6	0	0.929027	0.340976	2.425897
15	6	0	2.591691	2.580186	2.409483
16	1	0	2.534728	2.418019	0.264330
17	6	0	1.314912	0.927772	3.621865
18	1	0	0.285477	-0.532883	2.429322

19	6	0	2.150266	2.046619	3.613572
20	1	0	3.237476	3.450040	2.402132
21	1	0	0.969660	0.515458	4.562636
22	1	0	2.452877	2.500784	4.549863
23	15	0	0.918401	0.158792	-0.414626
24	17	0	-1.194176	0.135101	-0.213615

Total Energy (Hartree):-1264.780774Sum of electronic and thermal Free Energies(Hartree)=-1264.636867Selected Bond Lengths:2.12225Selected NBO Charges:0.891P(23)0.344

Selected Wiberg Bond Indices: P(23)-Cl(24) 0.8502

Selected Mayer Bond Indices: P(23)-Cl(24) 1.73917237

Selected Fuzzy Bond Indices: P(23)-Cl(24) 1.34854420

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	1.217454	-1.871354	-0.187188
2	6	0	1.553277	-2.232337	1.120666
3	6	0	1.257849	-2.848076	-1.187179
4	6	0	1.914497	-3.542825	1.420865
5	1	0	1.532140	-1.488826	1.909941
6	6	0	1.605982	-4.161756	-0.885925
7	1	0	1.013166	-2.578724	-2.210285
8	6	0	1.937397	-4.510638	0.420106
9	1	0	2.175537	-3.808673	2.438920
10	1	0	1.628131	-4.908109	-1.671544
11	1	0	2.216965	-5.530817	0.656274
12	6	0	1.335817	0.828495	0.720333
13	6	0	2.645303	1.305202	0.614017
14	6	0	0.600137	1.127645	1.869606
15	6	0	3.213957	2.057121	1.638055
16	1	0	3.224786	1.088142	-0.278174
17	6	0	1.165180	1.887170	2.890618
18	1	0	-0.417623	0.766320	1.972455
19	6	0	2.472870	2.352182	2.778543
20	1	0	4.230953	2.418963	1.540885
21	1	0	0.583307	2.114056	3.776820
22	1	0	2.910747	2.943130	3.574486
23	15	0	0.698535	-0.172498	-0.694577
24	6	0	-1.104533	-0.241177	-0.293987

25	6	0	-1.827853	0.953046	-0.461058
26	6	0	-1.767351	-1.380018	0.162511
27	6	0	-3.181686	0.994648	-0.131867
28	6	0	-3.125766	-1.335781	0.473907
29	1	0	-1.221356	-2.306786	0.297953
30	6	0	-3.829223	-0.145811	0.337765
31	1	0	-3.734258	1.920367	-0.244906
32	1	0	-3.624269	-2.227143	0.836134
33	1	0	-4.882259	-0.102012	0.590753
34	6	0	-1.488432	3.360669	-0.340558
35	1	0	-1.467253	3.255333	0.745416
36	1	0	-0.751291	4.112571	-0.630342
37	1	0	-2.480803	3.726228	-0.645212
38	6	0	-1.169653	2.173569	-2.418885
39	1	0	-0.495773	2.964782	-2.754143
40	1	0	-0.836339	1.229079	-2.851144
41	1	0	-2.184058	2.394726	-2.785397
42	7	0	-1.125022	2.093963	-0.959682

Total Energy (Hartree): -1170.112564Sum of electronic and thermal Free Energies(Hartree)= -1169.815721HOMO Energy (Hartree): -0.26401Selected Bond Lengths(Angstroms):P(42)-N(23)2.92104

Selected Bond Angles (degrees): P(42)-N(23)-C(1) 156.0

Selected NBO Charges:

P(42)	0.858
N(23)	-0.587
C(1)	-0.348

 Selected Wiberg Bond Indices:

 P(42)-N(23)
 0.0188

 Selected Mayer Bond Indices:

 P(42)-N(23)
 0.05684630

 Selected Fuzzy Bond Indices:

 P(42)-N(23)
 0.14452528

Center	Atomic	Atomic	Coor	dinates (Ang	gstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.168464	-1.909554	0.594835
2	6	0	1.820987	-2.286448	1.770376
3	6	0	0.800068	-2.909751	-0.314842
4	6	0	2.084365	-3.630311	2.036891
5	1	0	2.127152	-1.534082	2.488044
6	6	0	1.048377	-4.249554	-0.044005
7	1	0	0.304991	-2.635655	-1.242329
8	6	0	1.694529	-4.614424	1.136517
9	1	0	2.593128	-3.904309	2.954098
10	1	0	0.745205	-5.009041	-0.755544
11	1	0	1.895613	-5.658310	1.347331
12	6	0	1.416882	0.762911	1.582897
13	6	0	2.614052	1.472954	1.467834
14	6	0	0.721850	0.801768	2.792900
15	6	0	3.109722	2.207766	2.541389
16	1	0	3.154850	1.460785	0.526700
17	6	0	1.214196	1.538156	3.867335
18	1	0	-0.213358	0.261628	2.897128
19	6	0	2.408426	2.243117	3.743841
20	1	0	4.039511	2.755303	2.437532
21	1	0	0.662842	1.562720	4.800412
22	1	0	2.789361	2.818737	4.579442
23	15	0	0.825091	-0.158223	0.096952
24	6	0	-1.019960	-0.116336	0.329445
25	6	0	-1.760383	0.911279	-0.285846
26	6	0	-1.702581	-1.088921	1.065078
27	6	0	-3.145777	0.941193	-0.140610

1c

28	6	0	-3.088289	-1.051037	1.200764
29	1	0	-1.149306	-1.890717	1.541551
30	6	0	-3.814277	-0.033518	0.594746
31	1	0	-3.706230	1.742946	-0.610797
32	1	0	-3.593663	-1.814867	1.780297
33	1	0	-4.892595	0.006516	0.695951
34	6	0	-0.442475	3.362678	0.789452
35	1	0	-1.091312	2.750428	1.419369
36	1	0	0.418318	3.669395	1.390123
37	1	0	-1.000952	4.262173	0.478875
38	6	0	0.918506	3.350177	-1.190515
39	1	0	1.749209	3.725044	-0.587771
40	1	0	1.323642	2.705772	-1.974356
41	1	0	0.420037	4.211530	-1.666538
42	7	0	0.021708	2.585542	-0.345921
43	6	0	-1.064998	1.980478	-1.098039
44	1	0	-0.627355	1.519970	-1.990971
45	1	0	-1.802202	2.726749	-1.440200

Total Energy (Hartree): -1209.418727

Sum of electronic and thermal Free Energies(Hartree)= -1209.092482HOMO Energy (Hartree): -0.26313Selected Bond Lengths (Angstroms):P(23)-N(42)2.89306Selected Bond Angles (Degrees):N(42)-P(23)-C(1)171.5Selected NBO Charges:P(23)0.871N(42)-0.586C(1)-0.348

 Selected Wiberg Bond Indices:

 P(23)-N(42)
 0.0285

 Selected Mayer Bond Indices:

 P(23)-N(42)
 0.06426618

 Selected Fuzzy Bond Indices:

 P(23)-N(42)
 0.19122325

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.236252	-1.851819	-0.190940
2	6	0	1.714974	-2.208628	1.071705
3	6	0	1.128427	-2.837295	-1.178300
4	6	0	2.067806	-3.528544	1.343117
5	1	0	1.811656	-1.458499	1.848808
6	6	0	1.469616	-4.157343	-0.903474
7	1	0	0.770793	-2.569430	-2.167860
8	6	0	1.941747	-4.505098	0.359635
9	1	0	2.437750	-3.793745	2.326797
10	1	0	1.373560	-4.911320	-1.676102
11	1	0	2.214244	-5.531811	0.574579
12	6	0	1.336431	0.832344	0.774729
13	6	0	2.646346	1.313890	0.679388
14	6	0	0.596992	1.106066	1.928018
15	6	0	3.213906	2.038018	1.722543
16	1	0	3.226045	1.118854	-0.217687
17	6	0	1.161910	1.840468	2.967969
18	1	0	-0.421735	0.745086	2.019003
19	6	0	2.470495	2.304237	2.869331
20	1	0	4.231168	2.401582	1.636369
21	1	0	0.578622	2.048773	3.857550
22	1	0	2.908000	2.874736	3.680235
23	15	0	0.705569	-0.147712	-0.655427
24	6	0	-1.097798	-0.217084	-0.272063
25	6	0	-1.867379	0.887883	-0.654056
26	6	0	-1.725078	-1.290822	0.363556
27	6	0	-3.231583	0.928175	-0.388469

1e

28	6	0	-3.094738	-1.255606	0.617540
29	1	0	-1.147410	-2.157868	0.664295
30	6	0	-3.849107	-0.147152	0.246632
31	1	0	-3.813616	1.793420	-0.684047
32	1	0	-3.570900	-2.095789	1.109822
33	1	0	-4.913737	-0.121942	0.447052
34	1	0	-1.393299	1.723967	-1.159535

Total Energy (Hartree): -1036.17058

Sum of electronic and thermal Free Energies(Hartree)= -1035.942163

HOMO Energy (Hartree): -0.27429

Selected NBO Charges:

P(23) 0.84

C(1) -0.324

C(12) -0.324

C(24) -0.324

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.098500	-1.070329	-0.707865
2	6	0	1.160860	-0.846193	0.161877
3	6	0	1.497307	0.450634	0.541531
4	6	0	0.760875	1.525129	0.019857
5	6	0	-0.324737	1.297834	-0.828827
6	6	0	-0.651982	-0.003193	-1.191446
7	1	0	-0.153265	-2.083684	-0.997338
8	1	0	1.727453	-1.682224	0.556237
9	1	0	-0.917976	2.121432	-1.203890
10	1	0	-1.491191	-0.180677	-1.852175
11	6	0	3.842954	0.166527	1.069971
12	1	0	4.080368	0.443656	0.042127
13	1	0	4.615898	0.578230	1.721701
14	1	0	3.862315	-0.928410	1.156958
15	6	0	2.208898	0.357548	2.833480
16	1	0	2.979067	0.738867	3.506839
17	1	0	1.252052	0.799005	3.115507
18	1	0	2.145437	-0.733499	2.949163
19	6	0	0.236552	4.406847	-0.337480
20	6	0	-0.312659	5.459121	0.401657
21	6	0	0.100415	4.389078	-1.733332
22	6	0	-0.998120	6.478960	-0.249226
23	1	0	-0.193971	5,500803	1.477192

2b

24	6	0	-0.583444	5.414823	-2.373373
25	1	0	0.530579	3.589498	-2.325446
26	6	0	-1.129210	6.461052	-1.633780
27	1	0	-1.420719	7.291618	0.328581
28	1	0	-0.683246	5.396883	-3.451747
29	1	0	-1.656210	7.261988	-2.138476
30	6	0	1.115916	3.393744	2.266467
31	6	0	2.203859	3.674704	3.089443
32	6	0	-0.154732	3.188057	2.812530
33	6	0	2.017793	3.759617	4.465097
34	1	0	3.195465	3.805119	2.674064
35	6	0	-0.330834	3.271844	4.187890
36	1	0	-0.999287	2.954428	2.171591
37	6	0	0.754867	3.557699	5.012651
38	1	0	2.862504	3.975959	5.107461
39	1	0	-1.313064	3.110196	4.614601
40	1	0	0.615109	3.618777	6.085208
41	6	0	3.172001	3.409899	-1.955441
42	6	0	3.323582	4.501377	-2.813951
43	6	0	2.850995	2.156362	-2.495105
44	6	0	3.104770	4.351217	-4.180576
45	1	0	3.618115	5.469002	-2.429664
46	6	0	2.613720	2.016299	-3.857046
47	1	0	2.777539	1.282398	-1.856032
48	6	0	2.730926	3.117392	-4.701943
49	1	0	3.224244	5.205002	-4.836757
50	1	0	2.348990	1.045128	-4.257592
51	1	0	2.549612	3.008190	-5.764427
52	6	0	3.642414	5.274412	0.264448
53	6	0	4.689829	5.561141	1.148845
54	6	0	2.842725	6.324907	-0.204975
55	6	0	4.929521	6.866299	1.565366
56	1	0	5.323242	4.758535	1.513230
57	6	0	3.080984	7.626775	0.218655
58	1	0	2.042184	6.141076	-0.910566
59	6	0	4.120433	7.899042	1.104971
60	1	0	5.745406	7.072592	2.247262
61	1	0	2.453982	8.430464	-0.148729
62	1	0	4.301132	8.916377	1.431231
63	7	0	2.555447	0.741955	1.460781
64	15	0	1.306363	3.193595	0.478946
65	15	0	3.464671	3.487854	-0.140260

Total Energy (Hartree): -1974.527096

Sum of electronic and thermal Free Energies(Hartree)= -1974.054936

Selected Bond Lengths:

N(63)-P(64)	2.92143
P(64)-P(65)	2.26457
Selected Bond Angles:	
N(63)-P(64)-C(19)	165.0
Selected NBO Charges:	
N(63)	-0.606

P(64)	1.313
P(65)	0.725
C(19)	-0.402

Selected Wiberg Bond	Indices:
N(63)-P(64)	0.0231
P(64)-P(65)	0.8498
Selected Mayer Bond I	ndices:
N(63)-P(64)	-0.03048788
P(64)-P(65)	0.71221565
Selected Fuzzy Bond In	ndices:
N(63)-P(64)	0.13113318
P(64)-P(65)	1.02173767

Center	Atomic	Atomic	Coordinates (Angstro		stroms)
Number	Number	Туре	Х	Y	Ζ
1	 15	0	6.907375	1.195314	4.772972
2	15	0	6.585071	0.262934	2.724018
3	7	0	4.707572	-0.787445	5.230673
4	6	0	5.416211	2.106585	5.314118
5	6	0	5.619372	3.377088	5.864995
6	1	0	6.619476	3.776042	5.971750
7	6	0	4.545128	4.150885	6.289857
8	1	0	4.725080	5.129888	6.716053
9	6	0	3.254719	3.659436	6.162146
10	1	0	2.407456	4.254113	6.481892
11	6	0	3.049219	2.385806	5.640791
12	1	0	2.041616	1.991730	5.570919
13	6	0	4.107348	1.587336	5.215687
14	6	0	3.797044	0.204558	4.685311
15	1	0	2.745204	-0.032638	4.911282
16	1	0	3.893618	0.187877	3.593918
17	6	0	4.507768	-0.962622	6.665955
18	1	0	4.623345	-0.009208	7.184885
19	1	0	5.258448	-1.655343	7.053565
20	1	0	3.506126	-1.362728	6.887375
21	6	0	4.574955	-2.066655	4.545059
22	1	0	3.577794	-2.509859	4.693501
23	1	0	5.321624	-2.762250	4.935713

24	1	0	4.744358	-1.934222	3.475451
25	6	0	8.266148	2.400936	4.660915
26	6	0	8.121746	3.561746	3.887869
27	1	0	7.163835	3.823119	3.452471
28	6	0	9.212663	4.394955	3.679556
29	1	0	9.094035	5.289209	3.079876
30	6	0	10.450535	4.081715	4.236621
31	1	0	11.299512	4.733170	4.067249
32	6	0	10.594718	2.937681	5.013334
33	1	0	11.553927	2.692788	5.452620
34	6	0	9.508650	2.094585	5.224885
35	1	0	9.642140	1.194046	5.811312
36	6	0	7.426998	0.009153	6.044027
37	6	0	7.820993	-1.289958	5.728789
38	1	0	7.803477	-1.643802	4.706170
39	6	0	8.227687	-2.147658	6.744806
40	1	0	8.530358	-3.158853	6.501381
41	6	0	8.239927	-1.711086	8.067164
42	1	0	8.553815	-2.384005	8.855947
43	6	0	7.846597	-0.413181	8.377681
44	1	0	7.851486	-0.071438	9.405398
45	6	0	7.441176	0.452637	7.367259
46	1	0	7.129887	1.462299	7.616500
47	6	0	8.281205	-0.364840	2.394339
48	6	0	8.342244	-1.737806	2.123853
49	1	0	7.428761	-2.324170	2.106251
50	6	0	9.563903	-2.358705	1.885945
51	1	0	9.596101	-3.421064	1.677380
52	6	0	10.737390	-1.612760	1.918758
53	1	0	11.691365	-2.094406	1.739702
54	6	0	10.686271	-0.244718	2.175371
55	1	0	11.597955	0.340656	2.192670
56	6	0	9.467211	0.380544	2.408795
57	1	0	9.450219	1.447364	2.592162
58	6	0	6.442427	1.842090	1.792293
59	6	0	7.390150	2.304291	0.875551
60	1	0	8.286203	1.733540	0.671040
61	6	0	7.184992	3.507293	0.205137
62	1	0	7.928677	3.857220	-0.500911
63	6	0	6.039630	4.259450	0.442226
64	1	0	5.891648	5.202011	-0.070918
65	6	0	5.071079	3.784800	1.323303
66	1	0	4.161844	4.348576	1.493483
67	6	0	5.262684	2.575472	1.979632
68	1	0	4.487903	2.213283	2.645822

Total Energy (Hartree): -2013.832393

Sum of electronic and thermal Free Energies(Hartree)= -2013.329251

Selected Bond Lengths:

N(3)-P(1)	2.99666
P(1)-P(2)	2.27408
Selected Bond Angles:	

N(3)-P(1)-C(25)174.7Selected NBO Charges:-N(3)-0.596P(1)1.325P(2)0.719C(25)-0.429

 Selected Wiberg Bond Lices:

 N(3)-P(1)
 0.0294

 P(1)-P(2)
 0.8502

 Selected Mayer Bond Lices:
 N(3)-P(1)

 N(3)-P(1)
 -0.01177609

 P(1)-P(2)
 0.66231300

 Selected Fuzzy Bond Lices:
 N(3)-P(1)

 N(3)-P(1)
 0.14401149

 P(1)-P(2)
 1.01674015

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	0.241409	-1.210718	0.953906
2	6	0	1.324825	-0.662090	1.636230
3	6	0	1.672767	0.667498	1.440132
4	6	0	0.927444	1.452734	0.549148
5	6	0	-0.170991	0.908128	-0.120568
6	6	0	-0.509181	-0.425054	0.085733
7	1	0	-0.021947	-2.250330	1.107037
8	1	0	1.901922	-1.268367	2.323541
9	1	0	-0.765072	1.512546	-0.794423
10	1	0	-1.361468	-0.846527	-0.432557
11	6	0	0.329284	3.955188	-0.945064
12	6	0	-0.395274	5.077072	-0.532249
13	6	0	0.184585	3.466625	-2.251111
14	6	0	-1.253352	5.709705	-1.425097
15	1	0	-0.299718	5.457681	0.477071
16	6	0	-0.675115	4.108048	-3.132694
17	1	0	0.721781	2.585899	-2.582047
18	6	0	-1.390156	5.230308	-2.723058
19	1	0	-1.814939	6.577520	-1.102080
20	1	0	-0.786411	3.726102	-4.139988
21	1	0	-2.058555	5.727444	-3.415665
22	6	0	1.510307	4.088840	1.753460
23	6	0	2.112931	5.352601	1.741004
24	6	0	0.967565	3.574446	2.931379
25	6	0	2.178699	6.092376	2.913354
26	1	0	2.530041	5.755989	0.824077
27	6	0	1.044465	4.322808	4.102511
28	1	0	0.489389	2.602536	2.941921
29	6	0	1.650727	5.573757	4.094499

2e

30	1	0	2.645224	7.069478	2.906166
31	1	0	0.628946	3.924086	5.019663
32	1	0	1.710064	6.149904	5.010002
33	6	0	4.419152	2.218666	0.549890
34	6	0	4.922137	0.953818	0.236236
35	6	0	4.629751	2.742129	1.833671
36	6	0	5.576892	0.203225	1.208939
37	1	0	4.817993	0.549452	-0.762011
38	6	0	5.266085	1.980075	2.805439
39	1	0	4.291687	3.742622	2.081111
40	6	0	5.731337	0.703680	2.497427
41	1	0	5.962858	-0.776852	0.955581
42	1	0	5.407983	2.388597	3.798755
43	1	0	6.230224	0.110685	3.254456
44	6	0	3.254158	2.291490	-2.153629
45	6	0	3.434920	2.967859	-3.364229
46	6	0	2.766838	0.977262	-2.165882
47	6	0	3.125732	2.346053	-4.570699
48	1	0	3.801600	3.988425	-3.362705
49	6	0	2.454922	0.362318	-3.371754
50	1	0	2.612365	0.437013	-1.239254
51	6	0	2.628755	1.047789	-4.573708
52	1	0	3.266288	2.879098	-5.502974
53	1	0	2.070546	-0.650512	-3.373407
54	1	0	2.378786	0.565361	-5.511096
55	15	0	1.464348	3.145534	0.213250
56	15	0	3.544317	3.301203	-0.650163
57	1	0	2.512421	1.084847	1.983916

Total Energy (Hartree): -1840.582741

Sum of electronic and thermal Free Energies(Hartree)= -1840.180995

Selected Bond Lengths (Angstroms):				
P(55)-P(56)	2.25743			
Selected NBO Charges:				
P(55)	1.284			
P(56)	0.71			
C(4)	-0.415			
C(11)	-0.406			
C(22)	-0.410			

 Selected Wiberg Bond Indices:

 P(55)-P(56)
 0.8546

 Selected Mayer Bond Indices:

 P(55)-P(56)
 1.05219178

 Selected Fuzzy Bond Indices:

 P(55)-P(56)
 1.04591081

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Ζ
	 6	 0	-1.061809	-1.023502	0.751831
2	6	0	0.313601	-1.091896	0.936595
3	6	0	1.105420	0.065164	0.916389
4	6	0	0.482647	1.309236	0.670795
5	6	0	-0.904836	1.356026	0.507280
6	6	0	-1.681964	0.204742	0.551762
7	1	0	-1.648957	-1.934564	0.773828
8	1	0	0.775686	-2.055953	1.107991
9	1	0	-1.382309	2.311496	0.316830
10	1	0	-2.754830	0.266043	0.415360
11	6	0	3.141813	-1.276932	0.832959
12	1	0	2.792768	-1.668268	-0.124040
13	1	0	4.220324	-1.112126	0.768047
14	1	0	2.959428	-2.031373	1.612733

15	6	0	2.976529	0.544620	2.385637
16	1	0	4.064592	0.613676	2.354753
17	1	0	2.579748	1.543359	2.562606
18	1	0	2.682117	-0.101404	3.227354
19	6	0	0.457379	3.760348	-0.775308
20	6	0	-0.218165	4.943952	-0.471974
21	6	0	0.388991	3.259376	-2.082265
22	6	0	-0.949200	5.611564	-1.453634
23	1	0	-0.186153	5.349045	0.532680
24	6	0	-0.346136	3.922388	-3.057273
25	1	0	0.905161	2.339181	-2.338435
26	6	0	-1.015698	5.104285	-2.746449
27	1	0	-1.471717	6.527192	-1.201618
28	1	0	-0.391567	3.517702	-4.062093
29	1	0	-1.584536	5.624583	-3.508126
30	6	0	1.267202	3.783273	1.970915
31	6	0	1.976093	4.985834	2.087589
32	6	0	0.466036	3.365598	3.035171
33	6	0	1.871816	5.762323	3.235752
34	1	0	2.603338	5.320913	1.265857
35	6	0	0.373496	4.137620	4.192088
36	1	0	-0.086620	2.434868	2.966159
37	6	0	1.071309	5.336410	4.293846
38	1	0	2.418924	6.695153	3.307318
39	1	0	-0.249310	3.800986	5.012872
40	1	0	0.995938	5.935717	5.193586
41	6	0	5.185965	2.614414	0.257438
42	6	0	5.895294	1.446929	-0.037356
43	6	0	5.244079	3.144148	1.548954
44	6	0	6.647319	0.819028	0.949267
45	1	0	5.873424	1.038120	-1.041579
46	6	0	6.010533	2.524071	2.531855
47	1	0	4.694586	4.049472	1.787090
48	6	0	6.711459	1.360424	2.232548
49	1	0	7.195387	-0.085864	0.713509
50	1	0	6.055399	2.946849	3.528545
51	1	0	7.307247	0.874271	2.996236
52	6	0	3.729861	2.398769	-2.247421
53	6	0	3.554090	2.834880	-3.564484
54	6	0	3.299002	1.117979	-1.889904
55	6	0	2.970248	2.000524	-4.511422
56	1	0	3.870925	3.830834	-3.854287
57	6	0	2.713265	0.285795	-2.840877
58	1	0	3.384644	0.782182	-0.862265
59	6	0	2.546553	0.723370	-4.151440
60	1	0	2.841419	2.351606	-5.528483
61	1	0	2.377245	-0.703549	-2.550930
62	1	0	2.087449	0.074542	-4.888131
63	7	0	2.506349	0.001720	1.112309
64	15	0	1.510301	2.823708	0.418538
65	15	0	4.284483	3.621647	-0.987303
66	17	0	6.031638	4.333993	-2.048538

 Total Energy (Hartree): -2434.911345

 Sum of electronic and thermal Free Energies(Hartree)= -2434.44472

 Selected Bond Lengths (Angstroms):

 N(63)-P(64)
 3.07198

 P(64)-P(65)
 3.21079

P(64)-P(65)	3.21079
P(65)-Cl(66)	2.16476
Selected Bond Angles (I	Degrees):
N(63)-P(64)-C(19)	142.8
P(64)-P(65)-Cl(66)	173.6
Selected NBO Charges:	
N(63)	-0.572
P(64)	0.911
P(65)	0.916
Cl(66)	-0.380
Selected Wiberg Bond I	ndices:
N(63)-P(64)	0.0091
P(64)-P(65)	0.097
P(65)-Cl(66)	0.7783

Selected Mayer Bond Indices:

N(63)-P(64)	-0.23425516
P(64)-P(65)	1.55244327
P(65)-Cl(66)	3.08199544

Selected Fuzzy Bond Indices:

N(63)-P(64)	0.09072844
P(64)-P(65)	0.27177287
P(65)-Cl(66)	1.27578268

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Ζ
1	15	0	6.920343	1.192912	4.719187
2	15	0	6.538317	0.225187	2.655586
3	7	0	4.710041	-0.803039	5.209187
4	6	0	5.432545	2.099113	5.299480
5	6	0	5.634763	3.365095	5.860093
6	1	0	6.634624	3.767467	5.956276
7	6	0	4.563979	4.131826	6.306942
8	1	0	4.746394	5.108115	6.738775
9	6	0	3.273715	3.636758	6.193426
10	1	0	2.428221	4.224810	6.529915
11	6	0	3.067778	2.367375	5.662477
12	1	0	2.060795	1.969980	5.600955
13	6	0	4.123513	1.577354	5.213813
14	6	0	3.805905	0.199328	4.673148
15	1	0	2.752894	-0.034010	4.900005
16	1	0	3.900550	0.189614	3.581718
17	6	0	4.514537	-0.988838	6.641801
18	1	0	4.635048	-0.039418	7.167309
19	1	0	5.265048	-1.686207	7.021954
20	1	0	3.512352	-1.388393	6.865519
21	6	0	4.573098	-2.073502	4.509126
22	1	0	3.575793	-2.517769	4.657350
23	1	0	5.321116	-2.774263	4.888742
24	1	0	4.738095	-1.928799	3.440164

25	6	0	8.272141	2.416035	4.636841
26	6	0	8.125591	3.576419	3.864155
27	1	0	7.170298	3.825346	3.415708
28	6	0	9.209477	4.422042	3.667287
29	1	0	9.086751	5.315069	3.066281
30	6	0	10.446163	4.120736	4.233282
31	1	0	11.290487	4.780187	4.071434
32	6	0	10.594186	2.975521	5.007497
33	1	0	11.552655	2.737359	5.452524
34	6	0	9.513604	2.122268	5.208922
35	1	0	9.651568	1.221096	5.793491
36	6	0	7.438873	0.021770	6.011531
37	6	0	7.829346	-1.280813	5.705781
38	1	0	7.809715	-1.638979	4.684679
39	6	0	8.233183	-2.135391	6.726161
40	1	0	8.532600	-3.148824	6.487313
41	6	0	8.245806	-1.693192	8.046516
42	1	0	8.557280	-2.362997	8.839060
43	6	0	7.854689	-0.392614	8.349535
44	1	0	7.859194	-0.045741	9.375723
45	6	0	7.452700	0.468611	7.333630
46	1	0	7.143578	1.480333	7.576854
47	6	0	8.253452	-0.390006	2.366774
48	6	0	8.339653	-1.769204	2.140522
49	1	0	7.428681	-2.354885	2.079394
50	6	0	9.575702	-2.384293	1.980533
51	1	0	9.626263	-3.451932	1.803913
52	6	0	10.741948	-1.626409	2.041139
53	1	0	11.707045	-2.103846	1.917390
54	6	0	10.666523	-0.252751	2.250023
55	1	0	11.570546	0.343952	2.286906
56	6	0	9.430120	0.365676	2.409397
57	1	0	9.397240	1.437284	2.559716
58	6	0	6.427470	1.834722	1.769288
59	6	0	7.376005	2.296506	0.854601
60	1	0	8.245677	1.698292	0.615721
61	6	0	7.199131	3.524069	0.223016
62	1	0	7.942990	3.872623	-0.483820
63	6	0	6.076595	4.300822	0.493705
64	1	0	5.948604	5.260892	0.007774
65	6	0	5.103809	3.825418	1.368674
66	1	0	4.209285	4.405698	1.561431
67	6	0	5.271477	2.592796	1.989517
68	1	0	4.492387	2.229056	2.649792
69	17	0	5.682885	-1.021734	-0.035485

Total Energy (Hartree): -2474.214707

Sum of electronic and thermal Free Energies(Hartree)= -2473.715649 Selected Bond Lengths (Angstroms):

3.01817
2.31104
3.08682

Selected Bond Angles (Degrees): N(3)-P(1)-C(25) 173.2 P(1)-P(2)-Cl(69) 173.4 Selected NBO Charges: N(3) -0.594 P(1) 1.284 0.813 P(2) Cl(69) -0.913 Selected Wiberg Bond Indices: N(3)-P(1) 0.0271 P(1)-P(2) 0.7877 P(2)-Cl(69) 0.0953

Selected Mayer Bond Indices:

N(3)-P(1)	0.05060327
P(1)-P(2)	0.02659623
P(2)-Cl(69)	0.53538382

Selected Fuzzy Bond Indices:

N(3)-P(1)	0.13619943
P(1)-P(2)	0.97610787
P(2)-Cl(69)	0.38310981

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	0.257841	-1.007732	0.966435
2	6	0	1.417688	-0.505610	1.555198
3	6	0	1.798812	0.811165	1.330220
4	6	0	1.021137	1.652339	0.523011
5	6	0	-0.139727	1.143312	-0.060331
6	6	0	-0.517156	-0.180887	0.160792
7	1	0	-0.037099	-2.036734	1.135302
8	1	0	2.030655	-1.141739	2.184026
9	1	0	-0.754131	1.773901	-0.693278
10	1	0	-1.421550	-0.563523	-0.298258
11	6	0	0.338267	4.078771	-0.828165
12	6	0	-0.717764	4.836578	-0.318626
13	6	0	0.406534	3.843501	-2.206231
14	6	0	-1.693654	5.343968	-1.173616
15	1	0	-0.781794	5.033697	0.745882
16	6	0	-0.576757	4.338286	-3.056496
17	1	0	1.229884	3.264603	-2.614514
18	6	0	-1.628049	5.092481	-2.540943
19	1	0	-2.507380	5.934614	-0.768874
20	1	0	-0.515701	4.142399	-4.121006
21	1	0	-2.389919	5.486376	-3.203379
22	6	0	1.420909	4.164648	1.828965
23	6	0	2.102678	5.366317	2.049045
24	6	0	0.587973	3.663564	2.832553
25	6	0	1.939141	6.064902	3.241105
26	1	0	2.762906	5.758575	1.280685
27	6	0	0 432959	4 357198	4 029422

3e
28	1	0	0.056248	2.731094	2.678836
29	6	0	1.104332	5.559474	4.234318
30	1	0	2.467803	6.997898	3.397392
31	1	0	-0.217180	3.959939	4.800267
32	1	0	0.980567	6.098301	5.166339
33	6	0	5.039482	2.099867	0.212382
34	6	0	5.345585	0.737944	0.147120
35	6	0	4.939493	2.722377	1.459424
36	6	0	5.520085	0.004843	1.315148
37	1	0	5.456022	0.253252	-0.817226
38	6	0	5.125846	1.990539	2.629148
39	1	0	4.706078	3.780993	1.516514
40	6	0	5.408340	0.629823	2.556378
41	1	0	5.750023	-1.052569	1.258432
42	1	0	5.043431	2.481384	3.591764
43	1	0	5.548744	0.056799	3.465460
44	6	0	3.808918	2.192854	-2.427859
45	6	0	3.713173	2.697668	-3.731121
46	6	0	3.029835	1.091878	-2.068697
47	6	0	2.865507	2.104907	-4.658618
48	1	0	4.301815	3.562623	-4.021599
49	6	0	2.170252	0.506461	-2.996170
50	1	0	3.067879	0.694356	-1.062659
51	6	0	2.086063	1.009493	-4.289820
52	1	0	2.803321	2.504519	-5.663878
53	1	0	1.562255	-0.340115	-2.697895
54	1	0	1.414452	0.554693	-5.008475
55	15	0	1.675858	3.345081	0.201117
56	15	0	4.829324	3.181601	-1.256199
57	1	0	2.712577	1.186880	1.780824
58	17	0	6.734526	2.791096	-2.175413

Total Energy (Hartree): -2300.968202

Sum of electronic and thermal Free Energies(Hartree)= -2300.572556

Selected Bond Lengths (Angstroms):

P(55)-P(56) 3.47776 P(56)-Cl(58) 2.1511 Selected Bond Angles (Degrees): P(55)-P(56)-Cl(58) 172.178 Selected NBO Charges: P(55) 0.877 P(56) 0.912 Cl(65) -0.369 Selected Wiberg Bond Indices: P(55)-P(56) 0.0483 P(56)-Cl(58) 0.8018

Selected Mayer Bond Indices:

P(55)-P(56)	1.32628702
P(56)-Cl(58)	2.57757290

 Selected Fuzzy Bond Indices:

 P(55)-P(56)
 0.18465366

D(56)_CI(58)	1 30305002
P(50)-CI(58)	1.50505002

Analysis of Computational Data:

The relative stabilities of the adducts was determined by simple comparison of the energies according to the following pseudo-reaction:

Donor + Acceptor = Adduct

Therefore: $\Delta E = E(Adduct) - E(Donor) - E(Acceptor)$

Zero point corrected Free energies were derived from the frequency calculations and analysed analogously. In comparing the relative stabilities of the cationic species, a similar logic was used.

Donor + Acceptor = Adduct + Anion

Therefore: $\Delta E = E(Adduct) + E(Anion) - E(Donor) - E(Acceptor)$. Since for comparision the Anions must be identical, direct comparision may be made for $\Delta E = E(Adduct) + E(Donor) - E(Acceptor)$. As in all cases the energy of the anion will cancel when comparisons are made.

References:

- ¹ E.B. Pedersen, J. Chem. Soc., Perkin Trans. 2, 1977, 473-476
- ² J. Scholz, V. Hager, X. Wang, F. T. U. Kohler, M. Sternberg, M. Haumann, N. Szesni, K. Meyer, and P. Wasserscheid, *ChemCatChem*, 2014, 6, 162 169
- ³ D. K. Duttaa, B. Deba, G. Hua, and J. D. Woollins, J. Mol. Cat. A: Chem., 2012, 353–**354**, 7–12
- ⁴ W. Chuang, I. Lin, H. Chen, Y. Chang, and S. C. N. Hsu, *Inorg. Chem.*, 2010, **49**, 5377–5384
- ⁵ A. Pagnoux-Ozherelyev, D. Bolien, S. Gaillard, F. Peudru, J-F. Lohier, R. J. Whitby , and J-L. Renaud, *Journal of Organometallic Chemistry*, 2014, **774**, 35-42
- ⁶ E. Shirakawa, Y. Yamamoto, Y. Nakao, S. Oda, T. Tsuchimoto, and T. Hiyama, *Angew. Chem. Int. Ed.*, 2004, **43**, 3448 –3451
- ⁷ D. C. Mudalige, E. S.F. Ma, S. J. Rettig, B. O. Patrick, and B. R. James, *Can. J. Chem.*, 2014, 92, 716–723
- ⁸ L. J. Hounjet, R. McDonald, M. J. Ferguson, and M. Cowie, *Inorg. Chem.*, 2011, **50**, 5361–5378
- ⁹L. J. Hounjet, M. Bierenstiel, M. J. Ferguson, R. McDonald, and M. Cowie, *Dalton Trans.*, 2009, 4213–4226
- ¹⁰ Z. Wanga, W. Jiangb, J. Liua, W. Jianga, Y. Wanga, B. Åkermarkc, L. Suna, *Journal of Organometallic Chemistry*, 2008, **693**, 17, 2828–2834
- ¹¹ G. S. Ananthnaga, N. Edukondalua, J. T. Magueb, M. S. Balakrishnaa, *Polyhedron*, 2013, **62**, 203–207
- ¹² See ESI: S. Molitor, J. Becker, and V. H. Gessner; J. Am. *Chem. Soc.*, **2014**, *136* (44), pp 15517–15520
- ¹³ N. Burford, P. J. Ragogna, R. McDonald and M. J. Ferguson, J. Am. Chem. Soc., 2003, **125**, 14404-14410.
- ¹⁴ V. P. Morgalyuk, P. V. Petrovskii, K. A. Lysenko, and E. E. Nifant'ev, Russ. J. Gen. Chem., 2010, Vol. 80, No. 1, pp. 100–105
- ¹⁵ CrysAlisPRO, Agilent Technologies UK Ltd, Yarnton, England
- ¹⁶ G. M. Sheldrick, Acta Cryst. (2008), A64, 112-122
- ¹⁷ Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program (2009). J. Appl. Cryst., 42, 339-341
- ¹⁸ Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009
- ¹⁹ http://comp.chem.umn.edu/info/DFT.htm
- ²⁰ NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold.
- a) A. J. Bridgeman, G. Cavigliasso, L. R. Ireland, and J. Rothery, J. Chem. Soc., Dalton Trans., 2001, 2095 2108. b) O. V. Sizova, L. V. Skripnikov, and A.Y. Sokolov, Journal of Molecular Structure: THEOCHEM, 2008, 870, 1–9
- ²² I. Mayer, P. Salvador, *Chemical Physics Letters*, 2004, **383**, 368–375
- ²³ T. Lu and F. Chen, "Multiwfn: A Multifunctional Wavefunction Analyzer", J. Comp. Chem., 2012, **33**, 580-592
- ²⁴ E. Matito, J. Poater, M. Sola, M. Duran, and P. Salvador, *J. Phys. Chem. A*, 2005, **109**, 9904-9910