Design of a Flexible Organometallic Tecton: Host–Guest Chemistry with Picric Acid and Self-assembly of Platina Macrocycles

Achintya Jana,¹Sourav Bhowmick,¹Supreet Kaur,²Hemant K. Kashyap,² and Neeladri Das^{1*}

¹Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India

²Department of Chemistry, Indian Institute of Technology Delhi, Delhi 110016, India.

Supporting Information

Table of contents

Contents:	Pages
¹ H and ¹³ C NMR spectra of compound 1	S2
¹ H and ¹³ C NMR spectra of compound 2	S3
¹ H and ³¹ P NMR spectra of compound 3	S4
¹ H and ³¹ P NMR spectra of compound M_1	S5
¹ H and ³¹ P NMR spectra of compound M_2	S6
¹ H and ³¹ P NMR spectra of compound M_3	S7
Thermodynamic parameters for the binding of 3 to picric acid (PA) as obtained by ITC	S8
ITC isotherm for the injection of 5 mM solution of 3 in 0.5 mM picric acid Solution at 298 K	S8
ORTEP presentation of 3	S 8
Bond distances (Å) and bond angles (°) around Pt ²⁺ centres found in complexes 3	S9
Illustration of Planes Showing the Distance between the Pt (II) Centers and the Dihedral Angle between the planes	S9

¹H NMR spectrum of 1 (2,6-bis(3-iodophenoxy)pyrazine):

¹³C NMR spectrum of 1 (2,6-bis(3-iodophenoxy)pyrazine):

¹H NMR spectrum of 2 (2,6-bis(3-ethynylphenoxy)pyrazine):

¹³C NMR spectrum of 2 (2,6-bis(3-ethynylphenoxy)pyrazine):

¹H NMR spectrum of 3:

³¹P NMR spectrum of 3:

¹H NMR spectrum of M₁:

³¹P NMR spectrum of M₁:

¹H NMR spectrum of M₂:

³¹P NMR spectrum of M₂:

¹H NMR spectrum of M₃:

³¹P NMR spectrum of M₃:

System	$\begin{matrix} K_1 \\ (M^{-1}) \end{matrix}$	ΔG_1 kcal/mol	$K_2 \ (M^{-1})$	ΔG_2 kcal/mol
3 + picric acid	$2.63(\pm 0.4) \times 10^4$	-6.02	$4.67(\pm 0.7) \times 10^5$	-7.72

Table 1.Thermodynamic parameters for the binding interaction between 3 and picric acid (PA) as obtained by ITC.

ITC isotherm for the injection of 5 mM solution of 3in 0.5 mM picric acid solution at 298 K.

ORTEP presentation of 3 (30% thermal ellipsoids) (green, Pt; violet, I; orange, P; blue, N; red, O; grey, C). Hydrogen atoms are omitted for the sake of clarity.

Bond lengths (Å)						
Pt01—C1	1.968(10)	Pt02—C4	1.956(11)			
Pt01—P007	2.304(8)	Pt02—P005	2.307(11)			
Pt01—P006	2.306(7)	Pt02—P008	2.314(12)			
Pt01—I003	2.643(8)	Pt02—I004	2.645(9)			
Bond angles (°)						
C1-Pt01-P007	90.42(27)	C4—Pt02—P005	89.30(25)			
C1—Pt01—P006	84.92(27)	C4—Pt02—P008	90.22(25)			
P007—Pt01—P006	175.33(9)	P005—Pt02—P008	173.71(8)			
C1—Pt01—I003	179.93(24)	C4—Pt02—I004	176.14(26)			
P007—Pt01—I003	89.56(6)	P005-Pt02-I004	89.76(6)			
P006—Pt01—I003	95.11(6)	P008—Pt02—I004	90.31(6)			

Table 2. Bond distances (Å) and bond angles (°) around Pt²⁺centres found in complex 3.

Illustration of Planes Showing the Distance between the Pt (II) Centers and the Dihedral Angle between the planes.

