ELECTRONIC SUPPLEMENTARY INFORMATION

In search for molecules displaying ferromagnetic exchange: multiple-decker Ni₁₂ and Ni₁₆ complexes from the use of pyridine-2amidoxime

Constantinos G. Efthymiou,^{a,b} Luís Cunha-Silva,^c Spyros P. Perlepes,^b Euan K. Brechin,^d Ross Inglis,^{*d} Marco Evangelisti,^{*e} and Constantina Papatriantafyllopoulou^{*a}

^a School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland. E-mail: constantina.papatriantafyllopo@nuigalway.ie; Tel: +353 91 493462.
^b Department of Chemistry, University of Patras, 26504 Patras, Greece.
^c REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
^d EastCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK. E-mail: r.inglis@ed.ac.uk; Tel: +44 11 650470.
^e Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Departamento de Fisica de la Materia Condensada, 50009 Zaragoza, Spain. Email:evange@unizar.es; +34-876-55-3342.

Fig. S1. Plot of energy versus total spin state for 1 (left) and 2 (right), derived from the isotropic fit of the susceptibility.

Fig. S2. Plot of the *ac* susceptibility for 1 (left) and 2 (right). The data were collected in zero applied *dc* field, a drive amplitude of 4.5 Oe and for 33, 333 and 1333 Hz, though they show no dependence on the frequency, at least down to T = 2 K.

Fig. S3. Magnetization *vs.* field data for 1 (left) and 2 (right) at three different temperatures. The solid lines represent calculated curves for uncorrelated cations at the corresponding temperatures, assuming S = 6, g = 2.0 and uniaxial anisotropy D = -0.8 K for 1 and S = 8, g = 2.2 and D = 0 for 2.

Fig. S4. Zero-applied-field magnetic entropy S_m , normalised to the gas constant *R*, *vs*. *T* in the indicated temperature range for 1.

Fig. S5. Specific heat *C*, normalised to the gas constant *R*, *vs. T* in the indicated temperature and field ranges for **2**.

Ni1-09 1.	.983(3)	Ni4-O4	2.104(3)
Ni1-O6' 2.	.014(3)	Ni4-N1	2.237(3)
Ni1-N18 2.	.041(3)	Ni5-O5'	1.826(2)
Ni1-N16 2.	.069(3)	Ni5-N19	1.847(3)
Ni1-O1 2.	.158(3)	Ni5-N2'	1.854(3)
Ni1-O10 2.	.170(3)	Ni5-N21	1.890(3)
Ni2-O5' 2.	.019(2)	Ni6-O6'	1.823(3)
Ni2-N15 2.	.041(3)	Ni6-N5'	1.843(3)
Ni2-O1 2.	.042(2)	Ni6-N22	1.864(3)
Ni2-N13 2.	.096(3)	Ni6-N24	1.884(3)
Ni2-O2 2.	.113(2)	Ni7-O8'	1.822(3)
Ni2-N16 2.	.374(3)	Ni7-N7	1.844(3)
Ni3-O7' 2.	.023(2)	Ni7-N17'	1.847(3)
Ni3-O2 2.	.037(2)	Ni7-N8	1.890(3)
Ni3-N3 2.	.066(3)	Ni8-O7'	1.824(2)
Ni3-N1 2.	.076(3)	Ni8-N10	1.846(3)
Ni3-O3 2.	.164(2)	Ni8-N14′	1.860(3)
Ni3-N13 2.	.249(3)	Ni8-N12	1.903(3)
Ni4-N4 2.	.022(3)	Ni1…Ni2	3.189(2)

Table S1. Selective interatomic distances and angles in complex $2.10H_2O.26MeOH^{a}$

Ni4-08'	2.032(2)	Ni1…Ni6	3.312(2)
Ni4-O3	2.046(2)	Ni1…Ni4′	3.956(2)
Ni4-N6	2.077(3)	Ni1…Ni7′	4.671(2)
O6'-Ni1-N18	172.84(12)	N19-Ni5-N2'	173.48(14)
O9-Ni1-N16	170.19(11)	O5'-Ni5-N21	173.10(12)
O1-Ni1-O10	174.22(11)	N2'-Ni5-N21	101.87(14)
O5'-Ni2-N15	176.44(11)	O6'-Ni6-N22	90.66(12)
O1-Ni2-N13	173.36(10)	N5'-Ni6-N22	173.56(15)
O2-Ni2-N16	172.79(10)	O6'-Ni6-N24	173.29(13)
O7'-Ni3-N3	178.81(11)	N7-Ni7-N17'	174.21(14)
O2-Ni3-N1	173.16(11)	O8'-Ni7-N8	171.63(12)
O3-Ni3-N13	176.65(10)	N17'-Ni7-N8	102.36(14)
N4-Ni4-O3	171.99(11)	N10-Ni8-N14'	173.17(13)
O8'-Ni4-N6	173.26(11)	O7'-Ni8-N12	171.24(12)
O4-Ni4-N1	175.38(11)	N14'-Ni8-N12	103.89(13)

^{*a*} Symmetry transformations used to generate equivalent atoms:

': -x+1,-y+1,-z+1

D–H···A	D…A	D-H…A	Symmetry Operator of
	[Å]	[deg]	A
N9–H9A…O14	2.805(2)	167.4(1)	<i>x</i> , <i>y</i> , <i>z</i>
N11–H11A…O11	2.880(2)	162.5(1)	<i>x</i> , <i>y</i> , <i>z</i>
N23-H23A… O13	2.908(2)	162.7(1)	x, y, 1+z
N14-H14A…O17	2.935(2)	163.0(1)	<i>x</i> , <i>y</i> , <i>z</i>
O4-H4A…O24	2.778(2)	177.4(1)	<i>x</i> , <i>y</i> , <i>z</i>
N5-H5A…O27	3.051(2)	170.5(1)	<i>x</i> , <i>y</i> , <i>z</i>
O10-H10A…O24	2.704(2)	169.8(1)	<i>x</i> , <i>y</i> , <i>z</i>
O32-H32A…O12	2.736(2)	170.8(1)	<i>x</i> , <i>y</i> , <i>z</i>
O24-H24A…O13	2.605(2)	176.3(1)	<i>x</i> , <i>y</i> , <i>z</i>
O33-H33A…O12	2.920(2)	158.8(1)	<i>x</i> , <i>y</i> , <i>z</i>
O28-H28A…O18	2.758(2)	158.9(1)	<i>x</i> , <i>y</i> , <i>z</i>
O27-H27…O15	2.683(2)	169.8(1)	<i>x</i> , <i>y</i> , <i>z</i>
O26-H26…O17	2.793(2)	166.6(1)	<i>x</i> , <i>y</i> , <i>z</i>
O31-H31A…O33A	2.710(2)	120.4(1)	<i>x</i> , <i>y</i> , <i>z</i>
O20-H20…O15	2.717(2)	178.2(1)	<i>x</i> , <i>y</i> , <i>z</i>
O29-H29A⋯O4W	2.796(2)	164.9(1)	<i>x</i> , <i>y</i> , <i>z</i>

 Table S2. Hydrogen Bonds for Complex 2.10H2O.26MeOH ^a

 a A = acceptor atom, D = donor atom.