Experimental

4-B(OH) $\mathbf{2}_{\mathbf{2}} \mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \mathbf{C}(\mathbf{M e})=\mathbf{N N}(\mathbf{H}) \mathbf{C}(=\mathbf{S}) \mathbf{N H M e}(\mathbf{a}) .4$-Acetylphenylboronic acid (671 mg , 4.09 mmol) and hydrochloric acid ($35 \%, 0.65 \mathrm{~cm}^{3}$) were added to a suspension of 4 -methyl-3-thiosemicarbazide ($430 \mathrm{mg}, 4.09 \mathrm{mmol}$) in water $\left(40 \mathrm{~cm}^{3}\right)$ to give a clear solution, which was stirred at room temperature for 4 h . The white solid formed was filtered off, washed with cold water, and dried in vacuo. Yield: $924 \mathrm{mg}, 90 \%$. Anal. Found: C, 47.8; H, 5.6; N, 16.8; S, 12.7%; $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{BN}_{3} \mathrm{O}_{2} \mathrm{~S}$ ($251.11 \mathrm{~g} / \mathrm{mol}$) requires C, 47.8; H, 5.6; N, 16.7; S, 12.8%. IR($\left.\mathrm{cm}^{-1}\right): v(\mathrm{~N}-\mathrm{H}) 3314$, 3341; v(C=N) 1570; v(C=S) 831, v(O-H) 3500; v(B-O) 1363. ${ }^{1} \mathrm{H}$ NMR (DMSO): 2.29 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$); 3.04 (d, 3H, NHCH3, $\left.{ }^{3} J(\mathrm{NHMe})=4.2 \mathrm{~Hz}\right) ; 7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 5, N=8.3 \mathrm{~Hz}) ; 7.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 6$, $N=8.3 \mathrm{~Hz}) ; 8.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{B}(\mathrm{OH})_{2}\right) ; 8.47(\mathrm{~b}, 1 \mathrm{H}, \mathrm{N} H \mathrm{Me}) ; 10.23(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H)$.
$\left[\operatorname{Pd}\left\{4-\mathrm{B}(\mathrm{OH})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathbf{M e})=\mathrm{NN}=\mathbf{C}(\mathbf{S}) \mathrm{NHMe}\right\}\right]_{4}(\mathbf{1})$. To a stirred solution of potassium tetrachloropalladate ($114 \mathrm{mg}, 0.35 \mathrm{mmol}$) in water $\left(6 \mathrm{~cm}^{3}\right)$ was added ethanol $\left(40 \mathrm{~cm}^{3}\right)$. The resulting fine yellow suspension was treated with ligand $\mathbf{a}(88 \mathrm{mg}, 0.35 \mathrm{mmol})$. The mixture was stirred for 24 h at room temperature. The yellow precipitate was filtered off, washed with ethanol and dried. Yield: 105mg (89\%). Anal. Found: C: 33.7; H: 3.3; N: 11.9; S: $8.9 \% ; \mathrm{C}_{40} \mathrm{H}_{48} \mathrm{~N}_{12} \mathrm{~B}_{4} \mathrm{O}_{8} \mathrm{~S}_{4} \mathrm{Pd}_{4}(1422.08 \mathrm{~g} / \mathrm{mol})$ requires C: 33.8; $\mathrm{H}: 3.4 ; \mathrm{N}: 11.8$; S: 9.0%. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{N}) 1583 ; v(\mathrm{~N}-\mathrm{H}) 3256 ; v(\mathrm{O}-\mathrm{H}) 3431 ; \mathrm{v}(\mathrm{B}-\mathrm{O}) 1382 .{ }^{1} \mathrm{H}$ NMR (DMSO): $2.28(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}) ; 2.84\left(\mathrm{~d}, 12 \mathrm{H}, \mathrm{NHCH3},{ }^{3} J(\mathrm{NHMe})=4.6 \mathrm{~Hz}\right) ; 6.50$ (bs, $4 \mathrm{H}, \mathrm{N} H \mathrm{Me}) ; 6.68\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H} 3,{ }^{3} J(\mathrm{H} 3 \mathrm{H} 2)=7.6 \mathrm{~Hz}\right) ; 7.33\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H} 2,{ }^{3} J(\mathrm{H} 2 \mathrm{H} 6)=\right.$ $7.6 \mathrm{~Hz}) ; 7.61\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{B}(\mathrm{OH})_{2}\right) ; 7.79(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H} 5)$.
$\left[\mathbf{P d}\left\{4-\mathbf{B}(\mathbf{O H})_{2} \mathbf{C}_{6} \mathbf{H}_{\mathbf{3}} \mathbf{C}(\mathbf{M e})=\mathbf{N N}=\mathbf{C}(\mathbf{S}) \mathbf{N H M e}\right\}\left\{\mathrm{PPh}_{3}\right\}\right]$ (3). The phosphine $\mathrm{PPh}_{3}(42 \mathrm{mg}$, 1.2 mmol) was added to a suspension of complex $\mathbf{1}(57 \mathrm{mg}, 0.040 \mathrm{mmol})$ in acetone (20 cm^{3}). The mixture was stirred for 24 h . The resulting yellow solid was filtered off and dried. Yield: 20 mg (80%). Anal. Found: C, $54.2 ; \mathrm{H}, 4.3 ; \mathrm{N}, 6.6 ; \mathrm{S}, 5.4 \%$, $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{BO}_{2} \mathrm{SPPd}(617.18 \mathrm{~g} / \mathrm{mol})$ requires $\mathrm{C}, 54.4 ; \mathrm{H}, 4.4 ; \mathrm{N}, 6.8 ; \mathrm{S}, 5.2 \%$. $\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$: $v(\mathrm{C}=\mathrm{N}) 1588 ; \mathrm{v}(\mathrm{N}-\mathrm{H}) 3284 ; \mathrm{v}(\mathrm{O}-\mathrm{H}) 3398 ; \mathrm{v}(\mathrm{B}-\mathrm{O}) 1371 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.25(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}) ; 2.91\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{NHCH}_{3},{ }^{3} \mathrm{~J}(\mathrm{NHMe})=4.6 \mathrm{~Hz}\right) ; 6.92(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NHMe}) ; 6.98(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H} 3,{ }^{3} \mathrm{~J}(\mathrm{H} 3 \mathrm{H} 2)=7.6 \mathrm{~Hz}\right) ; 7.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 5) ; 7.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 2) ; 7.33-7.70\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PPh} h^{2}\right)$; $7.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{B}(\mathrm{OH})_{2}\right) .{ }^{31} \mathrm{P}$ RMN $\left(\mathrm{CDCl}_{3}\right): 36.58\left(\mathrm{~s}, \mathrm{PPh}_{3}\right)$.
$\left[\mathbf{P d}\left\{4-\left(4-\mathrm{MeC}(=\mathbf{O}) \mathrm{C}_{6} \mathbf{H}_{4}\right) \mathbf{C}_{6} \mathbf{H}_{\mathbf{3}} \mathbf{C}(\mathbf{M e})=\mathbf{N N}=\mathbf{C}(\mathbf{S}) \mathbf{N H M e}\right\}\left\{\mathbf{P P h}_{3}\right\}\right]$ (4). Method I: To a stirred solution of compound 3 ($39 \mathrm{mg}, 0.06 \mathrm{mmol}$) in dry THF ($10 \mathrm{~cm}^{3}$) 4-bromoacetophenone ($24 \mathrm{mg}, 0.12 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(51 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](58 \mathrm{mg}, 0.005 \mathrm{mmol})$ were added and the mixture was refluxed for 24 h . After cooling to room temperature water $\left(10 \mathrm{~cm}^{3}\right)$ was added and the mixture was extracted with dichloromethane ($2 \times 20 \mathrm{~cm}^{3}$). The combined extracts were dried over MgSO_{4} and the solvent removed under vacuum. The residue was chromatographed on a column packed with silica gel. Elution with dichloromethane/methanol (2\%) afforded the final product after concentration, as a yellow crystalline solid. The yellow precipitate was filtered off, washed with ethanol and dried. Yield: $15 \mathrm{mg}, 36 \%$. Method II: An analogous procedure to that of method I was followed albeit without addition of $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$. The resulting mixture was stirred for 15 min . at room temperature and refluxed for a further 30 minutes; the resulting crystals of $\mathbf{4}$ were separated by filtration. Anal. found: C, 62.7; H, 4.8; N, 6.0; S, $4.7 \%, \mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{OSPPd}$ ($692.12 \mathrm{~g} / \mathrm{mol}$) requires C, 62.5; H, 4.7; N, 6.1; S, 4.6 \%. IR($\left.\mathrm{cm}^{-1}\right)$: vC=N: 1593, vN-H: 3321, vO-H:3386, $\mathrm{v}(\mathrm{B}-\mathrm{O}): 1353 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.43(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ; 2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) ; 2.96(\mathrm{~d}, 3 \mathrm{H}$, $\left.\mathrm{NHCH}_{3},{ }^{3} J(\mathrm{NHMe})=4.9 \mathrm{~Hz}\right) ; 4.75(\mathrm{~b}, 1 \mathrm{H}, \mathrm{N} H \mathrm{Me}) ; 6.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} \mathrm{~J}(\mathrm{H} 3 \mathrm{H} 2)=\right.$ 7.6 Hz); 6.82 (m, 2H, H12, H16, $N=8.3 \mathrm{~Hz}$); 7.14 (s, 1H, H5); 7.35-7.79 (m, 15H, PPh_{3}); $8.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 13, \mathrm{H} 15, N=8.3 \mathrm{~Hz}) .{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{RMN}\left(\mathrm{CDCl}_{3}\right): 37.89(\mathrm{~s}, 1 \mathrm{P}$, $\left.\mathrm{PPh}_{3}\right)$.

X-ray Crystallographic Study: Three-dimensional, room temperature X-ray data were collected on a Siemens Smart CCD diffractometer by the w scan method using graphitemonochromated Mo-Kalpha radiation. All the measured reflections were corrected for Lorentz and polarisation effects and for absorption by semi-empirical methods based on symmetry-equivalent and repeated reflections. The structures were solved by direct methods and refined by full matrix least squares on $F 2$. Hydrogen atoms were included in calculated positions and refined in riding mode. Refinement converged at a final $R=$ 0.0353 and $w R_{2}=0.0721$, with allowance for thermal anisotropy of all non-hydrogen atoms. A molecule of solvent was proven to be indeterminate as both THF and DCM where used in the preparation. Therefore PLATON Squeeze was used to create a solvent mask of 47e. this equates to approximately C2 H4 O1.

The structure solution and refinement were carried out using the program package SHELXS-97 and SHELXL-2013, respectively.

Crystallographic study:

Table 1. Crystal and structure refinement data for compound 4.

Identification code	vi20la1n_sq_s
Empirical formula	C38 H36 N3 O2 P Pd S
Formula weight	736.13
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=10.7093(13) \AA$ 成 $\quad \alpha=107.932(2)^{\circ}$.
	$\mathrm{b}=11.0603(13) \AA$ A $\quad \beta=95.926(2)^{\circ}$.
Volume	1710.2(4) \AA^{3}
Z	2
Density (calculated)	$1.429 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.688 \mathrm{~mm}^{-1}$
F(000)	756
Crystal size	$0.54 \times 0.1 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	1.999 to 26.021°.
Index ranges	$-13<=\mathrm{h}<=13,-13<=\mathrm{k}<=13,-19<=1<=19$
Reflections collected	6711
Independent reflections	$6711[\mathrm{R}(\mathrm{int})=0.0402]$
Completeness to theta $=25.242^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.91 and 0.65
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6711 / 0 / 392
Goodness-of-fit on F^{2}	1.000
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0353, \mathrm{wR} 2=0.0721$
R indices (all data)	$\mathrm{R} 1=0.0651, \mathrm{wR} 2=0.0817$
Extinction coefficient	n/a
Largest diff. peak and hole	0.372 and $-0.517 \mathrm{e} . \AA^{-3}$

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for compound 4.

$\mathrm{Pd}(1)-\mathrm{C}(1)$	$2.020(3)$
$\mathrm{Pd}(1)-\mathrm{N}(1)$	$2.028(2)$
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.2520(9)$
$\mathrm{Pd}(1)-\mathrm{S}(1)$	$2.3484(9)$
$\mathrm{S}(1)-\mathrm{C}(5)$	$1.764(3)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.295(4)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.390(3)$
$\mathrm{N}(2)-\mathrm{C}(5)$	$1.303(4)$
$\mathrm{N}(3)-\mathrm{C}(5)$	$1.346(4)$
$\mathrm{N}(3)-\mathrm{C}(6)$	$1.447(4)$
$\mathrm{O}(1)-\mathrm{C}(10)$	$1.233(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.414(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.457(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.496(4)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.477(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.464(5)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.493(6)$

$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)$	$80.60(11)$
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$94.68(9)$
$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{S}(1)$	$82.78(8)$
$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{S}(1)$	$101.95(3)$
$\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{Pd}(1)$	$94.18(11)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{N}(2)$	$119.3(3)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{Pd}(1)$	$117.3(2)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{Pd}(1)$	$123.33(19)$
$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{N}(1)$	$112.3(3)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$114.0(3)$

$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$123.1(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$122.9(3)$
$\mathrm{C}(5)-\mathrm{N}(3)-\mathrm{C}(6)$	$123.5(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$116.6(3)$
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{N}(3)$	$117.3(3)$
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{S}(1)$	$127.4(2)$
$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{S}(1)$	$115.3(3)$
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.8(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120.2(4)$

Computational details

The overall reaction studied was:

3

ArBr

All the components which were optimized to ground state with the Gaussian g09 ${ }^{1}$ package of programs (M06/ ECP28MDF_GUESS ${ }^{2} / 6-31 \mathrm{G}(\mathrm{d})$).

Structures obtained

3a

3b

Figure 1.- 3b is slightly more stable than $\mathbf{3 a}$ by $1.13 \mathrm{Kcal} / \mathrm{mol}$.

[^0]

a3

Figure 2.- The eight conformers derived from a. The most stable one is a6, as shown in Table 3.

Table 3.- Related energies to the most stable conformer (a6)

Compound	Energy/(Kcal/mol)
$\mathbf{a 6}$	0
$\mathbf{a 5}$	0,29806725
$\mathbf{a 7}$	1,10755515
$\mathbf{a 8}$	1,47841356
$\mathbf{a 2}$	9,64796625
$\mathbf{a 3}$	10,04831763
$\mathbf{a 4}$	10,05082767
$\mathbf{a 1}$	10,6583201

The results show that the energy difference between the species with the same conformation (cis- or trans-) is ca. $1 \mathrm{Kcal} / \mathrm{mol}$, thus being nearly isoenergetic. The difference of $10 \mathrm{Kcal} / \mathrm{mol}$ between the cis- and the trans- conformers corroborates our assumption of a cis-fashion addition.

Figure 3.- The four conformers derived from $\mathbf{4}$. The most stable one is $\mathbf{4 d}$, as shown in Table 4.

Table 4.- Related energies to the most stable conformer (4d)

Compound	Energy/(Kcal/mol)
$\mathbf{4 d}$	0
$\mathbf{4 a}$	0,298067
$\mathbf{4 c}$	0,968875
$\mathbf{4 b}$	1,146461

Crystallographic data comparison

In the case of compound 4, suitable crystals for X-ray diffraction were obtained. In order to compare the crystal structure with the conformers studied, the results showed that the structure matches conformer $\mathbf{4 d}$; this is in accordance with the experimental data, and shows the wellness of the model.

Figure 4.- Comparison of the DFT optimized conformer $4 \mathbf{d}$ (orange) and the crystal structure (blue) for 4.

[^0]: ${ }^{1}$ M. J. Frisch et al. Gaussian 09, Revision D.01; Gaussian, Inc., Wallingford CT, 2013.
 ${ }^{2}$ K. A. Peterson, D. Figgen, M. Dolg, H. Stoll, J. Chem. Phys. 2007 126, 124101.

