Experimental

4-B(OH)₂C₆H₄C(Me)=NN(H)C(=S)NHMe (a). 4-Acetylphenylboronic acid (671 mg, 4.09 mmol) and hydrochloric acid (35%, 0.65 cm³) were added to a suspension of 4–methyl–3–thiosemicarbazide (430 mg, 4.09 mmol) in water (40 cm³) to give a clear solution, which was stirred at room temperature for 4 h. The white solid formed was filtered off, washed with cold water, and dried in *vacuo*. Yield: 924 mg, 90%. Anal. Found: C, 47.8; H, 5.6; N, 16.8; S, 12.7 %; C₁₀H₁₄BN₃O₂S (251.11 g/mol) requires C, 47.8; H, 5.6; N, 16.7; S, 12.8 %. IR(cm⁻¹): υ (N–H) 3314, 3341; υ (C=N) 1570; υ (C=S) 831, υ (O–H) 3500; υ (B–O) 1363. ¹H NMR (DMSO): 2.29 (s, 3H, Me); 3.04 (d, 3H, NHC*H3*, ³*J*(NHMe) = 4.2Hz); 7.80 (m, 2H, H3, H5, *N* = 8.3Hz); 7.90 (m, 2H, H2, H6, *N* = 8.3Hz); 8.12 (s, 2H, B(OH)₂); 8.47 (b, 1H, NHMe); 10.23 (bs, 1H, NH).

[Pd{4-B(OH)₂C₆H₃C(Me)=NN=C(S)NHMe}]₄ (1). To a stirred solution of potassium tetrachloropalladate (114 mg, 0.35 mmol) in water (6 cm³) was added ethanol (40 cm³). The resulting fine yellow suspension was treated with ligand **a** (88 mg, 0.35 mmol). The mixture was stirred for 24h at room temperature. The yellow precipitate was filtered off, washed with ethanol and dried. Yield: 105mg (89%). Anal. Found: C: 33.7; H: 3.3; N: 11.9; S: 8.9 %; C₄₀H₄₈N₁₂B₄O₈S₄Pd₄ (1422.08 g/mol) requires C: 33.8; H: 3.4; N: 11.8; S: 9.0 %. IR(cm⁻¹): ν (C=N) 1583; ν (N–H) 3256; ν (O–H) 3431; ν (B–O) 1382. ¹H NMR (DMSO): 2.28 (s, 12H, Me); 2.84 (d, 12H, NHC*H3*, ³*J*(NHMe) = 4.6Hz); 6.50 (bs, 4H, N*H*Me); 6.68 (d, 4H, H3, ³*J*(H3H2) = 7.6Hz); 7.33 (d, 4H, H2, ³*J*(H2H6) = 7.6Hz); 7.61 (s, 8H, B(OH)₂); 7.79 (s, 4H, H5).

[Pd{4-B(OH)₂C₆H₃C(Me)=NN=C(S)NHMe}{PPh₃}] (3). The phosphine PPh₃ (42 mg, 1.2 mmol) was added to a suspension of complex 1 (57mg, 0.040 mmol) in acetone (20 cm³). The mixture was stirred for 24h. The resulting yellow solid was filtered off and dried. Yield: 20 mg (80 %). Anal. Found: C, 54.2; H, 4.3; N, 6.6; S, 5.4 %, C₂₈H₂₇N₃BO₂SPPd (617.18 g/mol) requires C, 54.4; H, 4.4; N, 6.8; S, 5.2 %. IR(cm⁻¹): ν (C=N) 1588; ν (N–H) 3284; ν (O–H) 3398; ν (B–O) 1371. ¹H NMR (CDCl₃): 2.25 (s, 3H, Me); 2.91 (d, 3H, NHCH₃, ³J(NHMe) = 4.6Hz); 6.92 (bs, 1H, NHMe); 6.98 (d, 1H, H3, ³J(H3H2) = 7.6Hz); 7.14 (s, 1H, H5); 7.25 (d, 1H, H2); 7.33-7.70 (m, 15H, PPh₃); 7.93 (s, 2H, B(OH)₂). ³¹P RMN (CDCl₃): 36.58 (s, PPh₃).

[Pd{4-(4-MeC(=O)C₆H₄)C₆H₃C(Me)=NN=C(S)NHMe}{PPh₃}] (4). Method I: To a stirred solution of compound 3 (39 mg, 0.06 mmol) in dry THF (10 cm^3) 4-bromoacetophenone (24 mg, 0.12 mmol), K₃PO₄ (51 mg, 0.24 mmol) and $[Pd(PPh_3)_4]$ (58 mg, 0.005 mmol) were added and the mixture was refluxed for 24h. After cooling to room temperature water (10 cm^3) was added and the mixture was extracted with dichloromethane (2 x 20 cm^3). The combined extracts were dried over MgSO₄ and the solvent removed under vacuum. The residue was chromatographed on a column packed with silica gel. Elution with dichloromethane/methanol (2%) afforded the final product after concentration, as a yellow crystalline solid. The yellow precipitate was filtered off, washed with ethanol and dried. Yield: 15 mg, 36 %. Method II: An analogous procedure to that of method I was followed albeit without addition of [Pd(PPh₃)₄]. The resulting mixture was stirred for 15 min. at room temperature and refluxed for a further 30 minutes; the resulting crystals of **4** were separated by filtration. Anal. found: C, 62.7; H, 4.8; N, 6.0; S, 4.7 %, C₃₆H₃₂N₃OSPPd (692.12 g/mol) requires C, 62.5; H, 4.7; N, 6.1; S, 4.6 %. IR(cm⁻¹): vC=N: 1593, vN-H: 3321, vO-H:3386, v(B-O): 1353. ¹H NMR (CDCl₃): 2.43 (s, 3H, Me); 2.55 (s, 3H, COCH₃); 2.96 (d, 3H, NHCH₃, ${}^{3}J$ (NHMe) = 4.9Hz); 4.75 (b, 1H, NHMe); 6.60 (d, 1H, H3, ${}^{3}J$ (H3H2) = 7.6Hz); 6.82 (m, 2H, H12, H16, N = 8.3Hz); 7.14 (s, 1H, H5); 7.35-7.79 (m, 15H, PPh_3 ; 8.06 (m, 2H, H13, H15, N = 8.3Hz). ${}^{31}P - {}^{1}H$ RMN (CDCl₃): 37.89 (s, 1P, PPh₃).

X-ray Crystallographic Study: Three-dimensional, room temperature X-ray data were collected on a Siemens Smart CCD diffractometer by the w scan method using graphite-monochromated Mo-Kalpha radiation. All the measured reflections were corrected for Lorentz and polarisation effects and for absorption by semi-empirical methods based on symmetry-equivalent and repeated reflections. The structures were solved by direct methods and refined by full matrix least squares on *F2*. Hydrogen atoms were included in calculated positions and refined in riding mode. Refinement converged at a final R = 0.0353 and $wR_2 = 0.0721$, with allowance for thermal anisotropy of all non-hydrogen atoms. A molecule of solvent was proven to be indeterminate as both THF and DCM where used in the preparation. Therefore PLATON Squeeze was used to create a solvent mask of 47e. this equates to approximately C2 H4 O1.

The structure solution and refinement were carried out using the program package SHELXS-97 and SHELXL-2013, respectively.

Crystallographic study:

Table 1. Crystal and structure refinement data for compound 4.

Identification code	vi20la1n_sq_s	vi20la1n_sq_s	
Empirical formula	C38 H36 N3 O2 P Pd S	C38 H36 N3 O2 P Pd S	
Formula weight	736.13		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 10.7093(13) Å	$\alpha = 107.932(2)^{\circ}$.	
	b = 11.0603(13) Å	$\beta = 95.926(2)^{\circ}.$	
	c = 15.9546(19) Å	$\gamma = 104.175(2)^{\circ}$	
Volume	1710.2(4) Å ³		
Z	2		
Density (calculated)	1.429 Mg/m^3	1.429 Mg/m ³	
Absorption coefficient	0.688 mm ⁻¹	0.688 mm ⁻¹	
F(000)	756	756	
Crystal size	0.54 x 0.1 x 0.05 mm ³	0.54 x 0.1 x 0.05 mm ³	
Theta range for data collection	1.999 to 26.021°.	1.999 to 26.021°.	
Index ranges	-13<=h<=13, -13<=k<=	-13<=h<=13, -13<=k<=13, -19<=l<=19	
Reflections collected	6711	6711	
Independent reflections	6711 [R(int) = 0.0402]	6711 [R(int) = 0.0402]	
Completeness to theta = 25.242°	99.8 %	99.8 %	
Absorption correction	Semi-empirical from equ	Semi-empirical from equivalents	
Max. and min. transmission	0.91 and 0.65	0.91 and 0.65	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	6711 / 0 / 392	6711 / 0 / 392	
Goodness-of-fit on F ²	1.000	1.000	
Final R indices [I>2sigma(I)]	$R1 = 0.0353, wR2 = 0.0^{\circ}$	R1 = 0.0353, $wR2 = 0.0721$	
R indices (all data)	R1 = 0.0651, wR2 = 0.03	R1 = 0.0651, wR2 = 0.0817	
Extinction coefficient	n/a	n/a	
Largest diff. peak and hole	0.372 and -0.517 e.Å ⁻³	0.372 and -0.517 e.Å ⁻³	

 Table 2. Selected bond distances (Å) and angles (°) for compound 4.

Pd(1)-C(1)	2.020(3)
Pd(1)-N(1)	2.028(2)
Pd(1)-P(1)	2.2520(9)
Pd(1)-S(1)	2.3484(9)
S(1)-C(5)	1.764(3)
N(1)-C(3)	1.295(4)
N(1)-N(2)	1.390(3)
N(2)-C(5)	1.303(4)
N(3)-C(5)	1.346(4)
N(3)-C(6)	1.447(4)
O(1)-C(10)	1.233(4)
C(1)-C(2)	1.414(4)
C(2)-C(3)	1.457(4)
C(3)-C(4)	1.496(4)
C(7)-C(8)	1.477(4)
C(9)-C(10)	1.464(5)
C(10)-C(11)	1.493(6)

C(1)-Pd(1)-N(1)	80.60(11)
C(1)-Pd(1)-P(1)	94.68(9)
N(1)-Pd(1)-S(1)	82.78(8)
P(1)-Pd(1)-S(1)	101.95(3)
C(5)-S(1)-Pd(1)	94.18(11)
C(3)-N(1)-N(2)	119.3(3)
C(3)-N(1)-Pd(1)	117.3(2)
N(2)-N(1)-Pd(1)	123.33(19)
C(5)-N(2)-N(1)	112.3(3)
N(1)-C(3)-C(2)	114.0(3)

N(1)-C(3)-C(4)	123.1(3)
C(2)-C(3)-C(4)	122.9(3)
C(5)-N(3)-C(6)	123.5(3)
C(1)-C(2)-C(3)	116.6(3)
N(2)-C(5)-N(3)	117.3(3)
N(2)-C(5)-S(1)	127.4(2)
N(3)-C(5)-S(1)	115.3(3)
O(1)-C(10)-C(11)	119.8(4)
C(9)-C(10)-C(11)	120.2(4)

Computational details

The overall reaction studied was:

All the components which were optimized to ground state with the Gaussian $g09^1$ package of programs (M06/ ECP28MDF_GUESS²/6-31G(d)).

Structures obtained

Figure 1.- 3b is slightly more stable than 3a by 1.13 Kcal/mol.

¹ M. J. Frisch *et al. Gaussian 09*, Revision D.01; Gaussian, Inc., Wallingford CT, **2013.**

² K. A. Peterson, D. Figgen, M. Dolg, H. Stoll, *J. Chem. Phys.* **2007** *126*, 124101.

Figure 2.- The eight conformers derived from **a**. The most stable one is **a6**, as shown in Table 3.

Table 3.- Related energies to the most stable conformer (a6)

Compound	Energy/(Kcal/mol)
a6	0
a5	0,29806725
a7	1,10755515
a8	1,47841356
a2	9,64796625
a3	10,04831763
a4	10,05082767
a1	10,6583201

The results show that the energy difference between the species with the same conformation (*cis-* or *trans-*) is *ca.* 1 Kcal/mol, thus being nearly isoenergetic. The difference of 10 Kcal/mol between the *cis-* and the *trans-* conformers corroborates our assumption of a *cis-*fashion addition.

Figure 3.- The four conformers derived from **4**. The most stable one is **4d**, as shown in Table 4.

Table 4.- Related energies to the most stable conformer (4d)

Compound	Energy/(Kcal/mol)
4d	0
4 a	0,298067
4c	0,968875
4 b	1,146461

Crystallographic data comparison

In the case of compound **4**, suitable crystals for X-ray diffraction were obtained. In order to compare the crystal structure with the conformers studied, the results showed that the structure matches conformer **4d**; this is in accordance with the experimental data, and shows the wellness of the model.

Figure 4.- Comparison of the DFT optimized conformer 4d (orange) and the crystal structure (blue) for 4.