Supporting Information

Synthesis and Solution Stability of Water-Soluble $\kappa^{2} N, \kappa O-\operatorname{Bis}(3,5-$ dimethylpyrazolyl)ethanol manganese(I) tricarbonyl bromide (CORM-ONN1)
 Michael Schmitt, ${ }^{\text {b,c }}$ Jürgen Popp, ${ }^{\text {b,c,e }}$ Stefan H. Heinemann, ${ }^{\text {d }}$ Ute Neugebauer, ${ }^{\text {b,c,e }}$ Matthias Westerhausen ${ }^{*, a}$

Content:
Figures S1-S12: NMR spectra of new compounds
Figures S13 and S14: MS spectra of the degradation product 4
Figure S15: Amount of CO released in the gas phase per CORM as a function of the reaction time
Figures S16-S18: Myoglobin assays at different wavelengths
Figure S19: UV-VIS spectrum of CORM-ONN1
Table S1: Max. CO per CORM by irradiation with different wavelengths
Figures S20-S22: Molecular structure representations of 1B and 4
Figure S23: Molecular structure of 2,2-bis(3,5-dimethylpyrazolyl)ethanol
Table S2: Crystal data and refinement details for the X-ray structure determinations

$[\operatorname{Bis}(3,5-d i m e t h y l-1-p y r a z o l y l) m e t h a n e] \mathbf{M n}(\mathbf{C O})_{3} \underline{\mathrm{Br}}$

Figure S1: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\left[\operatorname{Bis}(3,5\right.$-dimethyl-1-pyrazolyl)methane $] \mathrm{Mn}(\mathrm{CO})_{3} \mathrm{Br}$ in CDCl_{3}.

Figure S2: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectrum of $\left[\operatorname{Bis}(3,5\right.$-dimethyl-1-pyrazolyl)methane $] \mathrm{Mn}(\mathrm{CO})_{3} \mathrm{Br}^{\text {in }} \mathrm{CDCl}_{3}$.

Figure S3: ${ }^{1} \mathrm{H}$-NMR spectrum of $\left[\operatorname{Bis}(3,5\right.$-dimethylpyrazol-1-yl)acetate $] \mathrm{Mn}(\mathrm{CO})_{3}$ in CDCl_{3}.

Figure S4: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectrum of $\left[\operatorname{Bis}(3,5\right.$-dimethylpyrazol-1-yl)acetate $] \mathrm{Mn}(\mathrm{CO})_{3}$ in CDCl_{3}.

Figure S5: ${ }^{1} \mathrm{H}$-NMR spectrum of 2,2-bis(3,5-dimethylpyrazol-1-yl)ethanol in CDCl_{3}.

Figure S6: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectrum of 2,2-bis(3,5-dimethylpyrazol-1-yl)ethanol in CDCl_{3}.

Figure S7: ${ }^{1} \mathrm{H}$-NMR spectrum of $\left[\left\{\operatorname{Bis}(3,5\right.\right.$-dimethylpyrazol-1-yl)ethanol $\left.\} \mathrm{Mn}(\mathrm{CO})_{3}\right] \mathrm{Br}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S8: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectrum of $\left[\left\{\operatorname{Bis}(3,5\right.\right.$-dimethylpyrazol-1-yl)ethanol $\left.\} \mathrm{Mn}(\mathrm{CO})_{3}\right] \mathrm{Br}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S9: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CORM-ONN1 (3) in $\mathrm{D}_{2} \mathrm{O}$ after $0 \mathrm{~h}, 24 \mathrm{~h}$, and 7 d at 297 K and $310 \mathrm{~K} ; * 1=\mathrm{THF}, * 2$ $=\mathrm{MeOH}$.

Figure S10: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CORM-ONN1 (3) in $\mathrm{D}_{2} \mathrm{O}$ containing PBS after $0 \mathrm{~h}, 24 \mathrm{~h}$, and 7 d at 297 K and $310 \mathrm{~K} ; * 1=\mathrm{THF}, * 2=\mathrm{MeOH}$.
$\stackrel{+}{i}$

Figure S11: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectrum of the degradation product $\mathbf{4}$ in $\left[\mathrm{D}_{8}\right]$ THF.

Figure S12: ${ }^{55} \mathrm{Mn}-\mathrm{NMR}$ spectrum of the degradation product $\mathbf{4}$ in $\left[\mathrm{D}_{8}\right] \mathrm{THF}$.

Figure S13: ESI-ToF-MS spectrum of 4.

Figure S14: Comparison of measured and calculated isotope pattern of the peak of $\left[\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{MnN}_{8} \mathrm{O}_{2}\right]^{+}$of complex 4.

CO Release Properties

Figure S15: Amount of CO released in the gas phase per CORM as a function of the reaction time. The CO amount was measured above solutions of CORM-CONN1. The irradiation with light at 405 nm (A) and $470 \mathrm{~nm}(\mathbf{B})$ was switched on after 15 min . The mono-exponential function $\mathrm{y}_{0}+\mathrm{A}\left(1-\mathrm{e}^{-\left(\mathrm{t}-\mathrm{t}_{0}\right) / \tau}\right)$ representing a first order reaction kinetic was fitted to the data of each measurement. The starting time t_{0}, the asymptotic value A and the time constant τ were used as free parameters, while the offset y_{0} was set to the value determined before the beginning of the irradiation. The starting time t_{0} is the sum of the time starting the irradiation and a delay caused by diffusion (see: M. Klein, U. Neugebauer, A. Gheisari, A. Malassa, T. Jazzazi, F. Froehlich, M. Westerhausen, M. Schmitt, J. Popp, J. Phys. Chem. A 2014, 118, 5381-5390). The calculated time constants for CORM-ONN1 are means \pm confidence intervals of 95%. For a better overview only the average values for each irradiation wavelength are shown. It is assumed that the irradiation intensity is constant during the entire reaction. A decrease of the irradiation intensity of less than 7% due to absorption by the CORM is assumed to not affect the profile of the first order reaction kinetic.

Myoglobin Assays

Figure S16: Myoglobin assay of CORM-ONN1 (irradiation with $365 \mathrm{~nm}, \mathrm{P}=1.58 \mathrm{~mW}$).

Figure S17: Myoglobin assay of CORM-ONN1 (irradiation with $405 \mathrm{~nm}, \mathrm{P}=2.48 \mathrm{~mW}$).

Figure S18: Myoglobin assay of CORM-ONN1 (irradiation with $480 \mathrm{~nm}, \mathrm{P}=2.50 \mathrm{~mW}$).

Table S1: Max. CO per CORM by irradiation with different wavelengths.

Irradiation with	Max. CO per CORM-ONN1
365 nm	1.78
405 nm	1.90
480 nm	1.37

UV-Vis Spectrum and Quantum Yield

Calculation of the quantum yield Φ

$$
\begin{aligned}
\Phi(\lambda) & =\frac{\text { numbers of events }}{\text { number of photons absorbed }} \\
& =\frac{\text { amount of reactant consumed }}{\text { amount of photons absorbed }}=\frac{\frac{d x}{d t}}{q_{0}\left[1-10^{-A b s(\lambda)}\right]}
\end{aligned}
$$

where $\frac{d x}{d t}$ is the rate of change of a measurable quantity, q_{0} the amount of photons incident per time interval and Abs the absorbance (Source: S. E. Braslavsky, Pure Appl. Chem. 2007, 79(3), 293-465, Glossary of terms used in photochemistry, $3^{\text {rd }}$ edition (IUPAC Recommendations 2006), pages 406-407).

The UV-VIS spectrum of CORM-ONN1 before and after irradiation in Figure S19 shows that the absoprtion band with its maximum at 360 nm vanished completly. Thus, also the absorptions of CORMONN1 at 405 nm and 470 nm were disappearing during the decay reaction of CORM-ONN1. The intensity difference caused by this decreasing absorption of CORM-ONN1 is neglegted for the estimation of the quantum yield. This intensity difference can be up to 13% (between start and end of reaction) for an irradiation at 405 nm and 0.3% at 470 nm . Therefore, photons incident per time interval q_{0} is assumed to be constant.

When the Beer-Lambert law is applied to describe the absorbance $A b s$, the following function for the quantum yield is received depending on the concentration c.

$$
\rightarrow(2 .) \quad \Phi(\lambda)=\frac{V \cdot N_{A} \cdot \frac{d c}{d t}}{q_{0}\left[1-10^{-v(t) \cdot \in \cdot l}\right]}
$$

where $c(t)$ [$\mathrm{mol} / \mathrm{l}]$ is the CORM concentration in solution at the time ${ }^{t}$, while ${ }^{l}$ [cm$]$ is the path length of the irradiated sample, $\in(\lambda)\left[1 \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right]$ the extinction coefficient and $q_{0}\left[\mathrm{~s}^{-1}\right]$ the number of photons incident per time interval. $\frac{d c}{d t}$ is the derivation of the concentration at the time point t and the volume of the solution $V=A \cdot l$ is given by the base area A and the path length l.
The number of photons incident per time interval $q_{0}\left[\mathrm{~s}^{-1}\right]$ is calculated by using the irradiation power per area $I_{0}\left[\mathrm{~mW} / \mathrm{cm}^{2}\right]$, the wavelength $\lambda[\mathrm{nm}]$, the base area $A\left[\mathrm{~cm}^{2}\right]$, the Planck constant $\boldsymbol{h}[\mathrm{J} \cdot \mathrm{s}]$, the speed of light $c_{\text {light }}[\mathrm{m} / \mathrm{s}]$.

$$
\text { with } q_{0}=\frac{I_{0} \cdot A}{E_{p h o t o n}}=\frac{I_{0} \cdot A \cdot \lambda}{h \cdot c_{\text {light }}} \cdot 10^{-1 z} \quad \rightarrow \quad \frac{q_{0}}{A}=\frac{I_{0} \cdot \lambda}{h \cdot c_{\text {light }}} \cdot 10^{-12}
$$

Since all measured absorbance values are smaller than 0.15 , we use an appoximation for the calculation of the quantum yield $\Phi(\lambda)$:

$$
\begin{aligned}
& 10^{-A b s(\lambda)}=e^{-\ln (10) \cdot A b s(\lambda)} \approx 1-\ln (10) \cdot A b s(\lambda) \quad \text { for } A b s(\lambda)<0.15 \\
& \Rightarrow \quad \Phi(\lambda) \approx \frac{V \cdot N_{A} \cdot \frac{d c}{d t}}{q_{0}[1-(1-\ln (10) \cdot A b s(\lambda))]}=\frac{V \cdot N_{A} \cdot \frac{d c}{d t}}{q_{0} \cdot \ln (10) \cdot c(t) \cdot \epsilon \cdot l}
\end{aligned}
$$

We conclude form Figure S15 that the CORM decay reaction can be describe by a first order reaction resulting in the following concentration profile for the starting material:

$$
c_{\mathrm{CORM}}(t)=c_{0} \cdot e^{-\frac{t-t_{0}}{\tau}} \quad \rightarrow \quad \frac{d c}{d t} c=-\frac{1}{\tau} \cdot c
$$

$$
\rightarrow \quad \Phi(\lambda) \approx \frac{A \cdot l \cdot N_{A} \cdot \frac{1}{\tau} \cdot c(t)}{q_{0} \cdot \ln (10) \cdot c(t) \cdot \epsilon \cdot l}=\frac{N_{A}}{\frac{q_{0}}{A} \cdot \ln (10) \cdot \epsilon \cdot \tau}
$$

Figure S19: UV-VIS absorption spectrum of CORM-ONN1 in PBS ($250 \mu \mathrm{M}$) before and after irradiation.

Molecule Representations:

Figure S20: Molecular structure and numbering scheme of $\left.\left[\left\{\left(\mathrm{Pz}^{\mathrm{Me} 2}\right)_{2} \mathrm{CH}_{2}\right\} \mathrm{Mn}(\mathrm{CO})\right)_{3} \mathrm{Br}\right](\mathbf{1 B}$, monoclinic modification). The ellipsoids represent a probability of 30%. Hydrogen atoms are neglected for clarity reasons. Selected bond lengths (pm): Mn1-Br1 257.46(4), Mn1-N2 211.7(2), Mn1-N4 209.8(2), Mn1-C12 180.6(2), Mn1-C13 180.0(2), Mn1-C14 181.1(2), C12-O1 115.1(3), C13-O2 112.1(3), C14-O3 114.8(3); angles (deg.): Br1-Mn1-N2 96.01(5), Br1-Mn1-N4 92.48(5), Br1-Mn1-C12 84.57(7), Br1-Mn1-C13 173.20(8), Br1-Mn1-C14 83.65(7), N2-Mn1-N4 85.38(7), N2-Mn1-C12 96.49(9), N2-Mn1-C13 88.46(9), N2-Mn1-C14 178.60(9), N4-Mn1-C12 176.65(9), N4-Mn1-C13 92.99(9), N4-Mn1-C14 93.28(9), C12-Mn1-C13 89.84(10), C12-Mn1-C14 84.83(10), C13-Mn1-C14 92.00(10).

Figure S21: Structure and numbering scheme of the anion $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$of iCORM 4 . The asymmetric unit contains two molecules A and B, only the anion of A is depicted. The ellipsoids represent a probability of 30%. Selected bond lengths (pm) of anion A: Mn2-C25 179.3(3), Mn2-C26 179.8(3), Mn2-C27 181.2(3), Mn2-C28 181.8(3), Mn2-C29 182.1(4), C25-O3 116.4(4), C26-O4 116.0(4), C27-O5 115.2(4), C28-O6 115.8(4), C29-O7 115.4(4); angles (deg.): C25-Mn-C26 115.8(2), C25-Mn2-C27 125.4(1), C26-Mn-C27 118.8(1), C25-Mn-C28 91.0(2), C25-Mn-C29 88.7(2), C26-Mn-C28 92.4(1), C26-Mn-C29 92.5(1), C27-Mn-C28 88.0(2), C27-Mn-C29 87.9(2), C28-Mn-C29 174.8(1).

Figure S22: Ball-and-stick representation of the structure of iCORM 4, the degradation product of CORM-ONN1. The atoms are drawn with arbitrary radii, carbon-bound hydrogen atoms are neglected for clarity reasons. In the middle the dinuclear cation is shown, hydrogen bridges are clarified by broken lines. The $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$anions are located besides the complex cation without short distances between anion and cation.

Figure S23: Molecular structure and numbering scheme of $\left(\mathrm{Pz}^{\mathrm{Me}}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}$ (top) and aggregation via hydrogen bridges (bottom). The ellipsoids represent a probability of 30%. Hydrogen atoms are shown with arbitrary radii. Selected bond lengths (pm):O1-C2 141.2(2), O1-H1 1 O1 90 (3), N1-C3 135.9(2), N1-N2 136.9(2), N1-C1 145.4(2), N2-C5 133.3(2), N3-C8 135.9(2), N3-N4 136.6(2), N3-C1 146.2(2), N4-C10 133.1(2), C1-C2 153.0(2), C3-C4 137.2(2), C3-C7 149.3(2), C4-C5 140.7(2), C5-C6 149.2(2), C8-C9 137.4(2), C8-C12 148.9(2), C9-C10 140.3(2), C10-C11 149.5(2).

Table S2: Crystal data and refinement details for the X-ray structure determinations of the compounds $\mathbf{1}$ 2.

Compound	1A	1B	2
formula	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrMnN}_{4} \mathrm{O}_{3}$	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrMnN}_{4} \mathrm{O}_{3}$	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{MnN}_{4} \mathrm{O}_{5}$
fw $\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$	423.16	423.16	386.25
${ }^{\circ} \mathrm{C}$	-140(2)	-140(2)	-140(2)
crystal system	orthorhombic	monoclinic	triclinic
space group	Pnma	P $21 / \mathrm{n}$	$\mathrm{P} \overline{1}$
a/ \AA	10.0995(2)	9.3065(3)	8.1397(2)
b/ \AA	14.5864(3)	10.6722(3)	10.3669(3)
c / \AA	11.3819(2)	16.7643(5)	10.7821(2)
$\alpha /^{\circ}$	90	90	103.904(2)
$\beta 1^{\circ}$	90	98.598(1)	111.361(1)
$\gamma /{ }^{\circ}$	90	90	91.846(1)
V / \AA^{3}	1676.73(6)	1646.33(9)	815.25(3)
Z	4	4	2
$\rho\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.676	1.707	1.573
$\mu\left(\mathrm{cm}^{-1}\right)$	31.89	32.48	8.45
measured data	3607	11926	6395
data with $\mathrm{I}>2 \sigma(\mathrm{I})$	1874	3412	3519
unique data ($\mathrm{R}_{\mathrm{int}}$)	1980/0.0144	3724/0.0343	3667/0.0133
w R_{2} (all data, on $\left.\mathrm{F}^{2}\right)^{\text {a }}$	0.0461	0.0660	0.0606
$R_{1}(I>2 \sigma(I))^{\text {a }}$	0.0214	0.0281	0.0256
$S^{\text {b) }}$	1.101	1.116	1.046
Res. dens./e \AA^{-3}	0.329/-0.253	0.586/-0.509	0.356/-0.337
absorpt method	multi-scan	multi-scan	multi-scan
absorpt corr $\mathrm{T}_{\text {min }} / /_{\text {max }}$	0.6543/0.7456	0.6231/0.7456	0.6996/0.7456
CCDC No.	1488835	1488836	1488837

Table S2 (contd.): Crystal data and refinement details for the X-ray structure determinations of the compounds $\mathbf{3}-\left(\mathbf{P z}^{\mathrm{Me2}}\right)_{\mathbf{2}} \mathbf{C H}-\mathrm{CH}_{\mathbf{2}} \mathbf{O H}$.

Compound	3	4	$\left(\mathrm{Pz}^{\mathrm{Me}}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$
formula	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrMnN}_{4} \mathrm{O}_{4}$	$\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{Mn}_{2} \mathrm{~N}_{8} \mathrm{O}_{7}$	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$
$\mathrm{fw}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$	453.18	717.53	234.30
${ }^{\circ} \mathrm{C}$	-140(2)	-140(2)	-140(2)
crystal system	monoclinic	triclinic	triclinic
space group	P $21 / \mathrm{c}$	$\mathrm{P} \overline{1}^{1}$	$\mathrm{P} \overline{1}$
al \AA	13.8488(2)	11.6573(3)	7.4242(2)
b/ \AA	11.0641(3)	14.7441(3)	8.6729(3)
c/ \AA	11.6952(2)	20.6894(5)	10.7671(4)
$\alpha /^{\circ}$	90	85.371(2)	99.558(2)
$\beta 1^{\circ}$	98.380(1)	81.709(1)	103.319(2)
$\gamma /{ }^{\circ}$	90	69.787(1)	111.723(2)
V / \AA^{3}	1772.86(6)	3300.32(13)	602.02(3)
Z	4	4	2
$\rho\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.698	1.444	1.293
$\mu\left(\mathrm{cm}^{-1}\right)$	30.26	8.22	. 86
measured data	12429	38249	3831
data with $\mathrm{I}>2 \sigma(\mathrm{I})$	3679	11312	2392
unique data $\left(\mathrm{R}_{\mathrm{int}}\right)$	4031/0.0270	14363/0.0360	2718/0.0217
$\mathrm{w} R_{2}$ (all data, on $\left.\mathrm{F}^{2}\right)^{\text {a }}$	0.0565	0.1316	0.1187
$R_{1}(I>2 \sigma(I))^{\text {a) }}$	0.0248	0.0488	0.0514
$S^{\text {b }}$	1.063	1.057	1.070
Res. dens./e $\cdot \AA^{-3}$	0.365/-0.354	0.795/-1.004	0.282/-0.261
absorpt method	multi-scan	multi-scan	multi-scan
absorpt corr $\mathrm{T}_{\text {min }} /{ }_{\text {max }}$	0.6705/0.7456	0.6329/0.7456	0.6782/0.7456
CCDC No.	1488838	1488839	1505640

${ }^{\text {a) }}$ Definition of the R indices: $\mathrm{R}_{1}=\left(\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|\right) / \Sigma\left|F_{\mathrm{o}}\right|$;
$\mathrm{wR}_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2}$ with $w^{-1}=\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(a P)^{2}+\mathrm{bP} ; \mathrm{P}=\left[2 \mathrm{~F}_{\mathrm{c}}^{2}+\operatorname{Max}\left(\mathrm{F}_{\mathrm{o}}^{2}\right] / 3 ;\right.$
${ }^{\text {b) }} s=\left\{\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] /\left(N_{\mathrm{o}}-N_{\mathrm{p}}\right)\right\}^{1 / 2}$.

