Electronic Supplementary Information (ESI)

Temperature- and vapor-induced reversible single-crystal-to-single-crystal transformations of three 2D/3D Gd^{III}-organic frameworks exhibiting significant magnetocaloric effects

Sui-Jun Liu,*^a Chen Cao,^a Shu-Li Yao,^a Teng-Fei Zheng,^a Zheng-Xiang Wang,^a Chao Liu,^a Jin-Sheng Liao,^a Jing-Lin Chen,^a Yun-Wu Li*^b and He-Rui Wen*^a

^aSchool of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
E-mail: liusuijun147@163.com, wenherui63@163.com. Tel: +86-797-8312204, +86-797-8312553
^bSchool of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
E-mail: lyw5251851@163.com

*Corresponding author. E-mail: liusuijun147@163.com (S.-J. Liu), wenherui63@163.com (H.-R. Wen), lyw5251851@163.com (Y.-W. Li). Tel: +86-797-8312204, +86-797-8312553.

Gd1—O1 ^{#2}	2.424(4)	Gd1—O1	2.519(3)
Gd1—O6	2.431(3)	Gd1O4 ^{#2}	2.544(4)
Gd1—O2W	2.439(4)	Gd1—O2	2.585(4)
Gd1O5#1	2.446(4)	Gd1—O3 ^{#3}	2.650(4)
Gd1—O1W	2.477(4)	Gd1—O4 ^{#3}	2.477(4)
O1 ^{#2} —Gd1—O6	82.51(12)	O2—Gd1—O3 ^{#3}	69.84(12)
O1 ^{#2} —Gd1—O2W	84.50(13)	O4 ^{#3} —Gd1—O1	148.89(12)
O6—Gd1—O2W	138.42(13)	O1 ^{#2} —Gd1—O4 ^{#2}	66.06(12)
O1 ^{#2} —Gd1—O5 ^{#1}	71.85(13)	O6—Gd1—O4 ^{#2}	68.47(12)
O6—Gd1—O5 ^{#1}	66.84(12)	O2W—Gd1—O4 ^{#2}	70.14(13)
O2W—Gd1—O5 ^{#1}	143.32(13)	O5 ^{#1} —Gd1—O4 ^{#2}	121.08(12)
O1#2—Gd1—O1W	137.26(13)	O1W—Gd1—O4 ^{#2}	125.54(12)
O6—Gd1—O1W	68.95(13)	O4 ^{#3} —Gd1—O4 ^{#2}	63.26(14)
O2W—Gd1—O1W	137.70(14)	O1—Gd1—O4 ^{#2}	115.54(12)
O5 ^{#1} —Gd1—O1W	67.97(13)	O1 ^{#2} —Gd1—O2	109.46(12)
O1 ^{#2} —Gd1—O4 ^{#3}	129.21(12)	O6—Gd1—O2	132.96(13)
O6—Gd1—O4 ^{#3}	76.52(12)	O2W—Gd1—O2	88.59(14)
O2W—Gd1—O4 ^{#3}	81.75(12)	O5#1—Gd1—O2	74.07(13)
O5 ^{#1} —Gd1—O4 ^{#3}	134.93(12)	O1W—Gd1—O2	72.90(13)
O1W—Gd1—O4 ^{#3}	75.11(13)	O4 ^{#3} —Gd1—O2	118.75(12)
O1 ^{#2} —Gd1—O1	61.75(14)	O1—Gd1—O2	50.32(12)
O6—Gd1—O1	133.74(12)	O4 ^{#2} —Gd1—O2	158.41(13)
O2W—Gd1—O1	69.82(12)	O1 ^{#2} —Gd1—O3 ^{#3}	152.66(12)
O5 ^{#1} —Gd1—O1	74.32(12)	O6—Gd1—O3 ^{#3}	118.77(12)
O1W—Gd1—O1	118.23(12)	O2W—Gd1—O3 ^{#3}	68.20(13)
O1—Gd1—O3 ^{#3}	105.22(11)	O5 ^{#1} —Gd1—O3 ^{#3}	130.48(12)
O4 ^{#2} —Gd1—O3 ^{#3}	104.03(12)	O1W—Gd1—O3 ^{#3}	69.74(13)
O4 ^{#3} —Gd1—O3 ^{#3}	50.38(12)		

Table S1. Selected bond lengths (Å) and angles (°) for 1^a

^aSymmetry codes: #1: -x+1, -y+1, -z+1; #2: -x+1, -y+2, -z+1; #3: x+1, y, z; #4: x-1, y, z.

Gd1—O1W	2.426(15)	Gd1—O3 ^{#5}	2.499(12)
Gd1—O5	2.451(13)	Gd1—O6 ^{#3}	2.500(14)
Gd1—O1 ^{#4}	2.484(16)	Gd1—O2 ^{#1}	2.514(14)
Gd1—O3 ^{#1}	2.489(13)	Gd1—O2	2.517(12)
Gd1—O1	2.867(15)	Gd1O4 ^{#5}	2.583(16)
O1W—Gd1—O5	140.9(5)	O1W—Gd1—O4 ^{#5}	70.4(6)
O1W—Gd1—O1 ^{#4}	134.6(5)	O5—Gd1—O4 ^{#5}	138.8(5)
O5—Gd1—O1 ^{#4}	71.3(5)	O1 ^{#4} —Gd1—O4 ^{#5}	68.4(5)
O1W—Gd1—O3 ^{#1}	71.6(5)	O3 ^{#1} —Gd1—O4 ^{#5}	104.0(5)
O5—Gd1—O3 ^{#1}	111.1(5)	O3 ^{#5} —Gd1—O4 ^{#5}	50.8(4)
O1 ^{#4} —Gd1—O3 ^{#1}	136.9(4)	O6 ^{#3} —Gd1—O4 ^{#5}	111.3(5)
O1W—Gd1—O3 ^{#5}	81.5(4)	O2 ^{#1} —Gd1—O4 ^{#5}	149.2(5)
O5—Gd1—O3 ^{#5}	135.3(4)	O2—Gd1—O4 ^{#5}	107.4(5)
O1 ^{#4} —Gd1—O3 ^{#5}	87.0(4)	O1W—Gd1—O1	82.2(5)
O3 ^{#1} —Gd1—O3 ^{#5}	60.5(5)	O5—Gd1—O1	88.1(5)
O1W—Gd1—O6 ^{#3}	140.1(5)	O1 ^{#4} —Gd1—O1	65.1(5)
O5—Gd1—O6 ^{#3}	64.5(4)	O3#1—Gd1—O1	153.7(4)
O1 ^{#4} —Gd1—O6 ^{#3}	74.3(5)	O3 ^{#5} —Gd1—O1	118.1(4)
O3 ^{#1} —Gd1—O6 ^{#3}	69.4(4)	O6 ^{#3} —Gd1—O1	136.8(5)
O3 ^{#5} —Gd1—O6 ^{#3}	72.2(4)	O2 ^{#1} —Gd1—O1	108.1(4)
O1W—Gd1—O2 ^{#1}	78.9(5)	O2—Gd1—O1	48.1(4)
O5—Gd1—O2 ^{#1}	68.4(5)	O4#5—Gd1—O1	67.5(4)
O1 ^{#4} —Gd1—O2 ^{#1}	139.4(5)	O5—Gd1—O2	74.0(5)
O3 ^{#1} —Gd1—O2 ^{#1}	65.8(4)	O1#4—Gd1—O2	103.8(5)
O3 ^{#5} —Gd1—O2 ^{#1}	126.2(4)	O3#1—Gd1—O2	118.5(4)
O6 ^{#3} —Gd1—O2 ^{#1}	92.8(5)	O3 ^{#5} —Gd1—O2	150.5(5)
O1W—Gd1—O2	71.4(5)	O6#3—Gd1—O2	136.9(5)
O2 ^{#1} —Gd1—O2	60.1(5)		

Table S2. Selected bond lengths (Å) and angles (°) for 1a^a

^aSymmetry codes: #1: -*x*, -*y*+1, -*z*+1; #3: -*x*+1, -*y*+1, -*z*+2; #4: -*x*+1, -*y*+1, -*z*+1; #5: *x*, *y*-1, *z*.

		• • • • • •	
Gd1—05	2.305(15)	Gd1—O1 ^{#5}	2.451(16)
Gd1—O6 ^{#1}	2.364(16)	Gd1—O2	2.470(15)
Gd1—O3 ^{#4}	2.423(18)	Gd1—O2 ^{#3}	2.472(16)
Gd1—O4 ^{#4}	2.517(17)	Gd1—O4 ^{#3}	2.492(17)
Gd1—01	2.664(15)		
O5—Gd1—O6 ^{#1}	68.8(5)	O3 ^{#4} —Gd1—O4 ^{#4}	52.6(5)
O5—Gd1—O3 ^{#4}	131.5(5)	O1 ^{#5} —Gd1—O4 ^{#4}	75.7(5)
O6 ^{#1} —Gd1—O3 ^{#4}	142.7(6)	O2—Gd1—O4 ^{#4}	134.9(5)
O5—Gd1—O1 ^{#5}	79.4(5)	O2 ^{#3} —Gd1—O4 ^{#4}	128.6(5)
O6 ^{#1} —Gd1—O1 ^{#5}	77.6(6)	O4 ^{#3} —Gd1—O4 ^{#4}	64.6(6)
O3 ^{#4} —Gd1—O1 ^{#5}	77.2(5)	O5—Gd1—O1	131.3(5)
O5—Gd1—O2	143.1(5)	O6 ^{#1} —Gd1—O1	72.8(5)
O6 ^{#1} —Gd1—O2	80.4(5)	O3 ^{#4} —Gd1—O1	71.5(5)
O3#4—Gd1—O2	85.4(5)	O1 ^{#5} —Gd1—O1	63.8(5)
O1 ^{#5} —Gd1—O2	114.1(5)	O2—Gd1—O1	50.4(5)
O5—Gd1—O2 ^{#3}	83.2(5)	O2 ^{#3} —Gd1—O1	110.7(5)
O6 ^{#1} —Gd1—O2 ^{#3}	70.1(6)	O4#3—Gd1—O1	144.8(5)
O3 ^{#4} —Gd1—O2 ^{#3}	133.9(5)	O4#4—Gd1—O1	116.5(5)
O1 ^{#5} —Gd1—O2 ^{#3}	147.1(5)	O1 ^{#5} —Gd1—O4 ^{#3}	138.9(5)
O2—Gd1—O2 ^{#3}	67.0(6)	O2—Gd1—O4 ^{#3}	101.8(5)
O5—Gd1—O4 ^{#3}	83.8(5)	O2 ^{#3} —Gd1—O4 ^{#3}	65.3(6)
O6 ^{#1} —Gd1—O4 ^{#3}	129.8(6)	O5—Gd1—O4 ^{#4}	80.8(5)
O3 ^{#4} —Gd1—O4 ^{#3}	86.8(6)	O6 ^{#1} —Gd1—O4 ^{#4}	142.5(5)

Table S3. Selected bond lengths (Å) and angles (°) for 1b^a

^aSymmetry codes: #1: -x, -y+1, -z+3; #2: x, y+1, z; #3: -x+1, -y+1, -z+2; #4: x, y-1, z; #5: -x, -y+1, -z+2.

	, ,	ε	5 ())		
D-H····A	D–H	Н…А	D····A	D-H···A	
O2W–H2WA…O5	0.85	2.02	2.8223	157	
O2W-H2WB····O6	0.85	2.02	2.8230	157	
O1W–H1WB····O3	0.85	1.89	2.7202	166	
O1W–H1WA····O2	0.85	2.00	2.7320	143	
С2–Н2А····О3	0.97	2.60	3.5371	163	

Table S4. Hydrogen-Bonding Geometry (Å, °) for 1

Fig. S1. View of (a) the 1D $[Gd(pda)]_n$ chain in 1; (b) the 3D packing structure of 1.

Fig. S2. XRPD patterns of 1 (a), 1a (b) and 1b (c).

Fig. S3. The plots of χ_m^{-1} vs. *T* and the corresponding Curie-Weiss fitting curves for **1**, **1a** and **1b**.

Fig. S4. The *M vs. H* curves at 2.0 K of 1, 1a and 1b.

Fig. S5. The M vs. H plots of 1 (a), 1a (b) and 1b (c) at the indicated temperatures