Synthesis and structure of pseudo-three dimensional hybrid iodobismuthate semiconductors

Adam Dennington, Mark Weller

Supplementary Information

Figure S1. Thermogravimetric analysis of compound 1 (30-400°C)

Figure S2. Thermogravimetric analysis of compound 2 (30-400°C)

Figure S3. Thermogravimetric analysis of compound 3 (30-400°C)

	Compound								
Parameters	1a (150K)	1b (RT) 2a (150K)		2b (RT)	3a (150K)	3b (RT)			
BiBi distances (Å)	4.457	4.508	4.512	4.569	4.588	4.625			
	4.537	4.58	4.577	4.614	4.619	4.648			
	7.351*	7.470*	7.543*	7.649*	7.729*	7.797*			
Bi-I bonding interactions	2.891	2.892	2.899	2.905	2.923	2.921			
	2.96	2.96	2.936	2.939	2.93	2.928			
	3.058	3.065	3.045	3.061	3.056	3.064			
	3.081	3.09	3.099	3.107	3.12	3.118			
	3.215	3.277	3.216	3.237	3.24	3.252			
	3.301	3.312	3.279	3.289	3.255	3.263			
Intrachain I-I distances	4.416 (12-12)	4.478 (12-12)	4.345 (12-12)	4.337 (12-12)	4.397 (12-12)	4.304 (12-12)			
	4.309 (12-13)	4.342 (12-13)	4.336 (12-13)	4.383 (12-13)	4.356 (12-13)	4.304 (12-13)			
	4.325 (12-13)	4.377 (12-13)	4.416 (12-13)	4.448 (12-13)	4.492 (12-13)	4.378 (12-13)			
	4.344 (12-13)	4.398 (12-13)	4.421 (12-13)	4.471 (12-13)	4.521 (12-13)	4.525 (12-13)			
	4.225 (12-11)	4.214 (12-11)	4.162 (12-11)	4.179 (12-11)	4.192 (12-11)	4.131 (12-11)			
	4.412 (13-11)	4.420 (13-11)	4.450 (13-11)	4.456 (13-11)	4.295 (13-11)	4.463 (13-11)			
	4.554 (13-11)	4.348 (13-11)	4.494 (13-11)	4.483 (13-11)	4.351 (13-11)	4.499 (13-11)			
	4.494 (13-13)	4.319 (13-13)	4.446 (13-13)	4.432 (13-13)	4.315 (13-13)	4.375 (13-13)			
	4.344 (12-14)	4.522 (12-14)	4.311 (12-14)	4.324 (12-14)	4.464 (12-14)	4.307 (12-14)			
	4.420 (12-14)	4.418 (12-14)	4.360 (12-14)	4.380 (12-14)	4.509 (12-14)	4.360 (12-14)			
	4.250 (11-14)	4.263 (11-14)	4.284 (11-14)	4.295 (11-14)	4.343 (11-14)	4.338 (11-14)			
	4.191 (13-14)	4.229 (13-14)	4.486 (13-14)	4.202 (13-14)	4.122 (13-14)	4.199 (13-14)			
	4.237 (14-13)**	4.494 (14-13)**	4.316 (14-13)**	4.457 (14-13)**	4.718 (14-13)**	4.768 (14-13)**			
	4.417 (11-12)**	4.335 (11-12)**	4.562 (11-12)**	4.634 (11-12)**	4.490 (11-12)**	4.557 (11-12)**			
Interchain I-I interactions	3.761 (12-14)	4.338 (12-14)	3.765 (12-14)	3.811 (12-14)	4.015 (12-14)	3.817 (12-14)			
	4.254 (11-13)	3.800 (11-13)	4.169 (11-13)	4.226 (11-13)	3.779 (11-13)	4.072 (11-13)			
	4.396 (11-14)	4.436 (11-14)	4.324 (11-14)	4.357 (11-14)	4.210 (11-14)	4.244 (11-14)			
Interchain BiBi distances	8.488	8.53	8.393	8.446	8.299	8.34			
	9.211	9.02	9.131	9.096	9.112	9.161			
	9.914	9.202	9.782	9.168	9.146	9.167			

Table S1. Interaction and bonding parameter analysis for compounds 1-3 (obtained from RT and150K single-crystal data collections)

	Compound							
Parameters	1a (150K)	1b (RT)	2a (150K)	2b (RT)	3a (150K)	3b (RT)		
I-Bi-I bond angles (o)	83.16	84.04	, 83.76	84.38	84.23	84.45		
	85.22	85.75	, 87.84	87.01	86.48	85.88		
	87.25	88.23	. 88.16	87.69	87.13	86.53		
	89.15	88.49	88.34	88.26	87.18	87.26		
	89.08	88.71	. 88.46	88.64	87.65	87.91		
	89.45	89.14	, 88.5	88.86	88.08	88.22		
	89.47	89.48	, 88.84	89.35	89.86	90.52		
	90.55	90.41	. 89.52	89.6	91.45	91.73		
	93.14	92.11	. 92.44	91.92	92.38	92.2		
	93.16	93.5	94.33	94.46	93.22	93.36		
	93.81	93.79	94.47	94.52	95.83	95.75		
	95.93	95.77	94.98	94.92	96.46	96.25		
Bi-I-Bi bond angles (o)	90.53	91.29	91.66	92.31	92.82	93.47		
_	90.55	91.51	. 92.16	92.99	93.52	94.12		

Table S2. Bond angle analysis for compounds 1-3 (obtained from RT and 150K single-crystal data collections)

Figure S4. Tauc plot analysis of compounds 1-3

Figure S5. Compound 1 measured powder x-ray diffraction pattern compared to single-crystal data generated powder pattern. The broad feature at $2\theta = 19^{\circ}$ is from the sample holder.

Figure S6. Compound 2 measured powder x-ray diffraction pattern compared to single-crystal data generated powder pattern. The broad feature at $2\theta = 19^{\circ}$ is from the sample holder.

Figure S7. Compound 3 measured powder x-ray diffraction pattern compared to single-crystal data generated powder pattern