Electronic Supplementary Information

N-H Cleavage as a Route to New Pincer Complexes

of High-Valent Rhenium

Alex J. Kosanovich, Wei-Chun Shih, Rodrigo Ramírez-Contreras, Oleg V. Ozerov*

Department of Chemistry, Texas A&M University, College Station, Texas 77842

ozerov@chem.tamu.edu

Table of Contents

Graphical NMR Spectra of PNP and PNN Pincer Complexes	S3
Xray Diffractometry Details for (PNP)ReOCl ₂ (2)	S25
X-ray Diffractometry Details for (PNN ^H)ReOCl ₂ (3-Cl)	S26
X-ray Diffractometry Details for (PNN)ReOCI (4-CI)	S27
X-ray Diffractometry Details for (PNN)ReO(OTf) (4-OTf)	S28
ESI References	S28

Figure S01. ${}^{31}P{}^{1}H$ NMR (202 MHz, C₆D₆) spectrum of PN^HN^{H,Mes} (1)

Figure S02. ¹H NMR (500 MHz, C_6D_6) spectrum of $PN^HN^{H,Mes}$ (1). Sample contains residual silicone grease and toluene.

Figure S03. ³¹P{¹H} NMR (202 MHz, CDCl₃, 23 °C) spectrum of (PNP)ReOCl₂ (2).

Figure S04. ³¹P{¹H} NMR (202 MHz, toluene-d₈, 80 °C) spectrum of (PNP)ReOCl₂ (2).

Figure S05. ¹H NMR (500 MHz, CDCl₃, 23 °C) spectrum of (PNP)ReOCl₂ (**2**). Sample contains residual toluene.

Figure S06. ¹H NMR (500 MHz, toluene-d₈, 80 °C) spectrum of (PNP)ReOCl₂ (**2**). Sample contains residual pentane.

¹H NMR (500 MHz, toluene-d₈, 80 °C): δ 0.93 (dvt, *J* = 14.6, 7.2 Hz, 6H), 1.47 (m, 12H), 1.60 (dvt, *J* = 8.0 Hz, 6H), 2.27 (s, 6H), 2.44 (m, 2H), 3.10 (m, 2H), 6.82 (d, *J* = 8.4 Hz, 2H), 7.16 (br s, 2H), 7.22 (d, *J* = 8.4 Hz, 2H). ³¹P{¹H} NMR (202 MHz, toluene-d₈, 80 C): δ 33.4 (br s).

Figure S07.³¹P{¹H} NMR (202 MHz, CDCl₃) spectrum of (PNN^H)ReOCl₂ (3-Cl)

Figure S08. ¹H NMR (500 MHz, CDCl₃) spectrum of (PNN^H)ReOCl₂ (**3-Cl**). Sample contains residual silicone grease, pentane, and toluene.

Figure S09.³¹P{¹H} NMR (202 MHz, CDCl₃) spectrum of (PNN^H)ReOBr₂ (3-Br)

Figure S10. ¹H NMR (500 MHz, CDCl₃) spectrum of (PNN^H)ReOBr₂ (**3-Br**). Sample contains residual silicone grease and pentane.

.

Figure S11. ³¹P{¹H} NMR (202 MHz, CDCl₃) spectrum of (PNN)ReOCl (4-Cl)

Reaction of (PNN)ReOCI (4-CI) with HCl_{(aq)}: No precautions against introduction of air were taken. To a J. Young tube was added a CDCl₃ solution of (**4-CI**) (26.1 mg, 0.04 mmol) and 12M aqueous hydrochloric acid (5 μ L, 0.06 mmol). The solution was then monitored by ³¹P{¹H} and ¹H NMR spectroscopy. After 10 min it was observed that a clean ca. 15% conversion had occurred to (PNN^H)ReOCl₂ (**3-CI**) by ³¹P{¹H} NMR spectroscopy, with an N-H resonance observed in the ¹H NMR spectrum. The green solution was then placed on a rotator for 2 h after which time full, clean conversion was observed to (PNN^H)ReOCl₂ (**3-CI**) by both ¹H and ³¹P{¹H} NMR spectroscopy.

Figure S12. ¹H NMR (500 MHz, CDCl₃) spectrum of (PNN)ReOCl (**4-Cl**) with major isomer integrated. Sample contains residual pentane.

Figure S13. ³¹P{¹H} NMR (202 MHz, CDCl₃) spectrum of (PNN)ReOBr(4-Br)

Reaction of (PNN)ReOBr (4-Br) with Me₃SiCI: To a J.Young tube was added (PNN)ReOBr (**4-Br**) (17.6 mg, 0.023 mmol) which was dissolved in C₆D₆. To the resultant green solution was added 10 eq. Me₃SiCI (30 μ L, 0.23 mmol) and the tube was rotated for 24 h prior to NMR analysis. A clean ca. 14% conversion to (PNN)ReOCI (**4-CI**) was observed by ³¹P{¹H} NMR spectroscopy which was corroborated by ¹H NMR evidence showing the presence of only (PNN)ReOBr (**4-Br**), (PNN)ReOCI (**4-CI**), excess Me₃SiCI, and Me₃SiBr which had formed from the reaction. Attempts with excess equivalents of Me₃SiCI revealed that the metathesis reaction, though clean in formation of **4-CI**, remains sluggish under these conditions.

Figure S14. ¹H NMR (500 MHz, CDCl₃) spectrum of (PNN)ReOBr(**4-Br**) with major isomer integrated. Sample contains residual silicone grease, pentane, and Et₂O.

Figure S15. ${}^{31}P{}^{1}H$ NMR (202 MHz, C₆D₆) spectrum of (PNN)ReOCI(PMe₃) (4-PMe₃).

Figure S16. ¹H NMR (500 MHz, C_6D_6) spectrum of (PNN)ReOCl(PMe₃) (**4-PMe₃**) with major isomer integrated. Sample contains residual silicone grease, pentane, Et_2O , and CH_2Cl_2 from solvent.

Figure S17.³¹P{¹H} NMR (202 MHz, C₆D₆) spectrum of (PNN)ReO(OTf)(4-OTf)

Figure S18. ¹H NMR (500 MHz, C₆D₆) spectrum of (PNN)ReO(OTf)(**4-OTf**) with major isomer integrated. Sample contains residual silicone grease, pentane, Et₂O, and CH₂Cl₂.

Figure S19. ${}^{31}P{}^{1}H$ NMR (202 MHz, C₆D₆) spectrum of (PNN)ReO(OAc) (4-OAc)

Figure S20. ¹H NMR (500 MHz, C₆D₆) spectrum of (PNN)ReO(OAc) (**4-OAc**) with major isomer integrated. Sample contains residual silicone grease, pentane, Et₂O, and CH₂Cl₂.

Figure S21. ³¹P{¹H} NMR (202 MHz, C₆D₆) spectrum of (PNN)ReO(H) (4-H)

Figure S22. ¹H NMR (500 MHz, C₆D₆) spectrum of (PNN)ReO(H) (**4-H**) with major isomer integrated. Sample contains residual silicone grease, pentane.

X-ray Diffractometry Details for (PNP)ReOCl₂ (2), CCDC 1504712

A dark green, multi-faceted block of suitable size (0.35 x 0.29 x 0.05 mm) was selected from a representative sample of crystals of the same habit using an optical microscope and mounted onto a nylon loop. Low temperature (150 K) X-ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-ray tube, $K_{\alpha} = 0.71073$ Å). All diffractometer manipulations, including data collection, integration and scaling were carried out using the Bruker APEXII software.¹ An absorption correction was applied using SADABS.² The space group was determined on the basis of systematic absences and intensity statistics and the structure was solved by direct methods and refined by full-matrix least squares on F^2 . The structure was solved in the monoclinic P 2/n space group using XS³ (incorporated in SHELXLE). All non-hydrogen atoms were refined with anisotropic thermal parameters. All hydrogen atoms were placed in idealized positions and refined using riding model. Elongated/unusual thermal ellipsoid on Re1, Cl1, and O1 indicated that these atoms are disordered and was modeled successfully with half occupancies. The structure was refined (weighted least squares refinement on F^2) and the final least-squares refinement converged. No additional symmetry was found using ADDSYM incorporated in PLATON program.⁴

X-ray Diffractometry Details for (PNN^H)ReOCl₂ (3-Cl), CCDC 1504713

A dark green, multi-faceted block of suitable size (0.33 x 0.25 x 0.15 mm) was selected from a representative sample of crystals of the same habit using an optical microscope and mounted onto a nylon loop. Low temperature (150 K) X-ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-ray tube, $K_{\alpha} = 0.71073$ Å). All diffractometer manipulations, including data collection, integration and scaling were carried out using the Bruker APEXII software.¹ An absorption correction was applied using SADABS.² The space group was determined on the basis of systematic absences and intensity statistics and the structure was solved by direct methods and refined by full-matrix least squares on F^2 . The structure was solved in the triclinic P-1 space group using XS³ (incorporated in SHELXLE). All non-hydrogen atoms were refined with anisotropic thermal parameters. All hydrogen atoms were placed in idealized positions and refined using riding model. The structure was refined (weighted least squares refinement on F^2) and the final least-squares refinement converged. No additional symmetry was found using ADDSYM incorporated in PLATON program.⁴

X-ray Diffractometry Details for (PNN)ReOCI (4-CI), CCDC 1504714

A green, multi-faceted block of suitable size (0.90 x 0.62 x 0.10 mm) was selected from a representative sample of crystals of the same habit using an optical microscope and mounted onto a nylon loop. Low temperature (110 K) X-ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-ray tube, $K_{\alpha} = 0.71073$ Å). All diffractometer manipulations, including data collection, integration and scaling were carried out using the Bruker APEXII software.¹ An absorption correction was applied using SADABS.² The space group was determined on the basis of systematic absences and intensity statistics and the structure was solved by direct methods and refined by full-matrix least squares on F^2 . The structure was solved in the triclinic C 2/c space group using XS³ (incorporated in SHELXLE). All non-hydrogen atoms were refined with anisotropic thermal parameters. All hydrogen atoms were placed in idealized positions and refined using riding model. The structure was refined (weighted least squares refinement on F^2) and the final least-squares refinement converged. No additional symmetry was found using ADDSYM incorporated in PLATON program.⁴

X-ray Diffractometry Details for (PNN)ReO(OTf) (4-OTf), CCDC 1504715

A dark red, multi-faceted block of suitable size (0.15 x 0.12 x 0.08 mm) was selected from a representative sample of crystals of the same habit using an optical microscope and mounted onto a nylon loop. Low temperature (150 K) X-ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-ray tube, $K_{\alpha} = 0.71073$ Å). All diffractometer manipulations, including data collection, integration and scaling were carried out using the Bruker APEXII software.¹ An absorption correction was applied using SADABS.² The space group was determined on the basis of systematic absences and intensity statistics and the structure was solved by direct methods and refined by full-matrix least squares on F^2 . The structure was solved in the triclinic P-1 space group using XS³ (incorporated in SHELXLE). All non-hydrogen atoms were refined with anisotropic thermal parameters. All hydrogen atoms were placed in idealized positions and refined using riding model. The structure was refined (weighted least squares refinement on F^2) and the final least-squares refinement converged. No additional symmetry was found using ADDSYM incorporated in PLATON program.⁴

ESI References.

- ¹ APEX2, Version 2 User Manual, M86-E01078, Bruker Analytical X-ray Systems, Madison, WI, June 2006.
- ² G. M. Sheldrick, SADABS (version 2008/1): Program for Absorption Correction for Data from Area Detector Frames., University of Göttingen, 2008.
- ³ G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122
- ⁴ A. L. Spek, PLATON, A Multipurpose Crystallographic Tool., Utrecht University, Utrecht, The Netherlands, 1998.