Support Information for

# A Robust Indium-Porphyrin Framework for CO<sub>2</sub> Capture and Chemical Transformation

Lei Xu,<sup>a</sup> Meng-Ke Zhai,<sup>a</sup> Xin-Chao Lu,<sup>a</sup> Hong-Bin Du<sup>a\*</sup>

<sup>a</sup> State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China. E-mail: hbdu@nju.edu.cn

# **Table of Contents**

- **S1.** Optical and SEM images of the obtained NUPF-3 crystals.
- **S2.** PXRD pattern of as-synthesized NUPF-3.
- **S3.** FT-IR spectra of NUPF-3.
- **S4.** Solid-state UV-Vis spectra of NUPF-3.
- **S5.** Channels in NUPF-3.
- **S6.** N<sub>2</sub> adsorption/desorption isotherms of NUPF-3.
- **S7.** Dye adsorption experiments of NUPF-3.
- **S8.** Catalytic reactions.
- **S9.** Table S1 Crystal data for NUPF-3.
- S10. References.

S1. Optical and SEM images of the obtained NUPF-3 crystals.



Fig. S1 Optical and SEM images of the obtained NUPF-3 crystals.

S2. PXRD pattern of as-synthesized NUPF-3.



Fig. S2 PXRD patterns of NUPF-3.

## S3. FT-IR spectra of NUPF-3.



Fig. S3 FT-IR spectra of NUPF-3 measured at room-temperature.

## S4. Solid-state UV-Vis spectra of NUPF-3.

As shown in Fig. S4, the band at 390 nm was attributed to the S band of porphyrin ligands in NUPF-3. The bands at *ca.* 508 and 590 nm were ascribed to the Q bands.



Fig. S4 Solid-state UV-Vis spectrum of NUPF-3.

S5. Channels in NUPF-3.



**Fig. S5** Rhombic channels propagate along the *b*-axis in NUPF-3. The distances were atom to atom distances.

# S6. N<sub>2</sub> adsorption/desorption isotherms of NUPF-3.

 $N_2$  adsorption/desorption isotherms of NUPF-3 were measured after the sample activated by super-critical carbon dioxide (SCD). The BET surface area and pore volume determined by  $N_2$  adsorption were 38 m<sup>2</sup>/g and 0.018 cm<sup>3</sup>/g, respectively. The limited  $N_2$  adsorption of NUPF-3 indicates its very low affinity toward  $N_2$ .



Fig. S6 N<sub>2</sub> adsorption/desorption isotherms of NUPF-3 measured at 77 K.

#### S7. Dye adsorption experiments of NUPF-3.

In order to confirm the anionic nature of NUPF-3, a dye adsorption experiment was performed. 10 mg dry NUPF-3 samples were added into 5 mL 0.12 mM methyl orange (MO) and methyl violet (MV) solutions, respectively. The mixtures were shaken via a shaker at 180 rpm for 12 hours. Results indicate that NUPF-3 has strong adsorption toward cationic MV and no adsorption of anionic MO (Fig. S7). The selective adsorption of cationic dye clearly demonstrates the anionic nature of NUPF-3.



Fig. S7 Results of dye adsorption experiments of NUPF-3.



**S8.** Catalytic reactions.

Fig. S8 Recycle experiments of NUPF-3 for the cycloaddition of  $CO_2$  with 2-

methyloxirane.



Fig. S9 PXRD patterns of NUPF-3 before and after 4<sup>th</sup> catalytic run.



Fig. S10 PXRD patterns of In-MOF simulated and as-synthesized.

#### <sup>1</sup>H NMR characterization data:

**4-Methyl-1.3-dioxolan-2-one:** colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 1.45 (d, 3H), 3.95-3.99 (m, 1H), 4.50-4.56 (m, 1H), 4.79-4.87 (m, 1H).

**4-Chloromethyl-1,3-dioxolan-2-one:** colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 3.65-3.80 (m, 2H), 4.35 (dd, 1H), 4.54 (t, 1H), 4.69-5.0 (m, 1H).

**Tetrahydro-4H-cyclopenta[d][1,3]dioxol-2-one:** colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 1.61-1.80 (m, 4H), 2.03-2.08 (m, 2H), 5.10 (m, 2H).

- **4-Phenyl-1,3-dioxolan-2-one:** white solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 4.21 (t, 1H), 4.65 (t, 1H), 5.60 (t, 1H), 7.25-7.30 (m, 2H), 7.26-7.31 (m, 3H).
- **4-Ethyl-1,3-dioxolan-2-one:** white solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 0.96 (t, 3H), 1.72 (m, 2H), 4.08 (m, 1H), 4.48-4.55 (m, 1H), 4.60-4.70 (m, 1H).

**4-n-Butyl-1,3-dioxolan-2-one:** yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  0.87 (t, 3H), 1.31-1.38 (m, 4H), 1.63-1.73 (m, 2H), 3.39-4.05 (m, 1H), 4.47-4.53 (m, 1H) 4.65-4.70 (m, 1H).

**4-((Allyloxy)methyl)-1,3-dioxiolan-2-one:** colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 3.62-3.78 (m, 2H), 4.07 (m, 2H), 4.39-4.45 (m, 1H), 4.53-4.55 (m, 1H), 4.88 (m, 1H), 5.21 -5.32 (m, 2H), 5.84-5.95 (m, 1H).

| Compound                        | NUPF-3                                                                           |
|---------------------------------|----------------------------------------------------------------------------------|
| CCDC number                     | 1491888                                                                          |
| Empirical formula               | C <sub>80</sub> H <sub>55</sub> In <sub>2</sub> N <sub>9</sub> O <sub>19.5</sub> |
| Formula weight                  | 1683.97                                                                          |
| Temperature                     | 153 К                                                                            |
| Wavelength                      | 0.71073 Å                                                                        |
| Crystal system                  | Monoclinic                                                                       |
| space group                     | P21/c                                                                            |
|                                 | a=21.038(3) Å α = 90 °                                                           |
| Unit cell dimensions            | b=12.5112(17) Å β = 94.509(4) °                                                  |
|                                 | c=53.184(7) Å γ= 90 °                                                            |
| Volume                          | 13955(3) Å <sup>3</sup>                                                          |
| Z, Calculated density           | 4, 0.802 mg/m <sup>3</sup>                                                       |
| Absorption coefficient          | 0.373 mm <sup>-1</sup>                                                           |
| F(000)                          | 3408                                                                             |
| Theta range for data collection | 2.032 to 25.682 °                                                                |
| Reflections collected / unique  | 90761 / 26224 [Rint = 0.0783]                                                    |
| Completeness to theta = 27.64   | 98.9 %                                                                           |
| Absorption correction           | Semi-empirical from equivalents                                                  |
| Refinement method               | Full-matrix least-squares on F <sup>2</sup>                                      |
| Data / restraints / parameters  | 26224/1066/1093                                                                  |
| Goodness-of-fit on F^2          | 1.134                                                                            |
| Final R indices [I>2sigma(I)]   | R1 = 0.1458, wR2 = 0.3665                                                        |
| R indices (all data)            | R1 = 0.1696, wR2 = 0.3665                                                        |
| Largest diff. peak and hole     | 2.17/-3.77 e.A <sup>-3</sup>                                                     |

#### S9. Table S1 Crystal data for NUPF-3.

# S10. References.

[1] V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, *Crystal Growth & Design* **2014**, *14*, 3576-3586.