#### Supplementary Information

## Synthesis, structure and reactivity of Pd and Ir complexes based on new lutidinederived NHC/phosphine mixed pincer ligands

Práxedes Sánchez, Martín Hernández-Juárez, Eleuterio Álvarez, Margarita Paneque,\* Nuria Rendón and Andrés Suárez\*

<sup>a</sup> Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla, Avda Américo Vespucio 49, 41092, Sevilla (Spain).

E-mail: paneque@iiq.csic.es; andres.suarez@iiq.csic.es

### **Table of Contents**

| 1. | VT- <sup>1</sup> H NMR and <sup>1</sup> H- <sup>1</sup> H-EXSY Spectra of 4a(CI)              |
|----|-----------------------------------------------------------------------------------------------|
| 2. | VT- <sup>1</sup> H NMR Spectra of 5a(CI) and 6a(CI)6                                          |
| 3. | X-Ray Structure Analysis of 1a(Cl), 2a, 4b(BAr <sub>F</sub> ) and 7a(Cl)8                     |
| 4. | Selected <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H}-NMR spectra of M-CNP complexes17 |



# 1. VT-<sup>1</sup>H NMR and <sup>1</sup>H-<sup>1</sup>H-EXSY Spectra of 4a(CI)





**Figure S2a.** <sup>1</sup>H-<sup>1</sup>H NOESY spectrum of **4a(CI)** (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 50 °C) (Blue signals: exchange cross-peaks; green signals: NOE cross-peaks).



**Figure S2b.** Region of the <sup>1</sup>H-<sup>1</sup>H NOESY spectrum of **4a(CI)** (400 MHz,  $CD_2CI_2$ , 50 °C) (Blue signals: exchange cross-peaks; green signals: NOE cross-peaks. Signals marked with solid line squares: exchange cross-peaks due to  $CH_2P$  protons, signals marked with dotted line squares: olefin exchange cross-peaks due to olefinic protons).



**Figure S2c.** Region of the <sup>1</sup>H-<sup>1</sup>H NOESY spectrum of **4a(CI)** (400 MHz,  $CD_2CI_2$ , 50 °C) (Blue signals: exchange cross-peaks; green signals: NOE cross-peaks. Signals marked with solid line squares: exchange cross-peaks due to PPh<sub>2</sub> protons, signals marked with dotted line squares: exchange cross-peaks due to CH<sub>2</sub>N protons).

# 2. VT-<sup>1</sup>H NMR Spectra of 5a(CI) and 6a(CI)



Figure S3. VT-<sup>1</sup>H NMR spectra of 5a(CI) (400 MHz, CD<sub>2</sub>CI<sub>2</sub>).



**Figure S4.** VT-<sup>1</sup>H NMR spectra of **6a(CI)** (400 MHz,  $CD_2CI_2$ ). [ $\Delta G^{\dagger}_{214} = 10.0 \text{ kcal mol}^{-1}$ ]

#### 3. X-Ray Structure Analysis of 1a(CI), 2a, 4b(BAr<sub>F</sub>) and 7a(CI)

Crystals of suitable size for X-ray diffraction analysis, obtained using liquid diffusion techniques, were coated with dry perfluoropolyether and mounted on glass fibers and fixed in a cold nitrogen stream (T = 213 K) to the goniometer head. Crystallographic data collection were performed on a Bruker-Nonius X8Apex-II CCD diffractometer, using monochromatic radiation  $\lambda$  (Mo K<sub>a</sub>) = 0.71073 Å, by means of  $\omega$ and  $\varphi$  scans with a width of 0.50 degree. The data were reduced (SAINT)<sup>1</sup> and corrected for absorption effects by the multi-scan method (SADABS).<sup>2</sup> The structures were solved by direct methods (SIR-2002)<sup>3</sup> and refined against all  $F^2$  data by full-matrix least-squares techniques (SHELXTL-6.12)<sup>4</sup> minimizing  $w[F_0^2 - F_c^2]^2$ . All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included from calculated positions and refined riding on their respective carbon atoms with isotropic displacement parameters. The details of X-Ray single-crystal diffraction experiments are given below in Tables S1 to S4 in the Supporting Information, and molecular structures are shown in Figures S1 to S4. CCDC 1486492 [1a(CI)], 1486493 [2a], 1486494 [4b(BAr<sub>F</sub>)] and 1486495 [7a(CI)], contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

<sup>[1]</sup> Bruker. APEX2. Bruker AXS Inc., Madison, Wisconsin, USA, 2007.

<sup>[2]</sup> Bruker Advanced X-ray Solutions, Bruker AXS Inc., Madison, Wisconsin, USA, 2001.

<sup>[3]</sup> C. M. Burla, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, G. Polipori and R. Spagna, SIR2002: the program, *J. Appl. Cryst.*, 2003, **36**, 1103.

<sup>[4]</sup> C. M. Burla, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, G. Polipori and R. Spagna, SIR2002: the program, *J. Appl. Cryst.*, 2003, **36**, 1103.

### X-Ray data for 1a(CI)



**Figure S5**. ORTEP view of molecular structure of **1a(CI)** with thermal ellipsoids drawn at the 30% level. Most of the hydrogen atoms are omitted for clarity.

 Table S1. Crystal data and structure refinement for 1a(CI).

| $C_{31}H_{31}CIN_3P$                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [C <sub>31</sub> H <sub>31</sub> N <sub>3</sub> P <sup>+</sup> , Cl <sup>-</sup> ] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 512.01                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 193(2) K                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 0.71073 Å                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Monoclinic                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| P 2 <sub>1</sub> /c                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| <i>a</i> = 8.8606(15) Å                                                            | $\alpha = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| b = 27.202(4) Å                                                                    | $\beta = 110.027(6)^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| c = 12.531(2) Å                                                                    | $\gamma = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 2837.6(8) Å <sup>3</sup>                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 4                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1.198 Mg/m <sup>3</sup>                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 0.215 mm <sup>-1</sup>                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1080                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 0.20 x 0.10 x 0.05 mm <sup>3</sup>                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1.88 to 23.50°.                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| -9<=h<=9, -29<=k<=30, -7<=l<=14                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 17580                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 4176 [R(int) = 0.0930]                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 99.9 %                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Semi-empirical from equivalents                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 0.9893 and 0.9583                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Full-matrix least-squares                                                          | on F <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 4176 / 258 / 353                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1.009                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| R1 = 0.0977, wR2 = 0.23                                                            | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| R1 = 0.1966, wR2 = 0.2702                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 0.009(2)                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1.263 and -0.347 e.Å <sup>-3</sup>                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                    | C <sub>31</sub> H <sub>31</sub> ClN <sub>3</sub> P<br>[C <sub>31</sub> H <sub>31</sub> N <sub>3</sub> P <sup>+</sup> , Cl]<br>512.01<br>193(2) K<br>0.71073 Å<br>Monoclinic<br>P 2 <sub>1</sub> /c<br>a = 8.8606(15) Å<br>b = 27.202(4) Å<br>c = 12.531(2) Å<br>2837.6(8) Å <sup>3</sup><br>4<br>1.198 Mg/m <sup>3</sup><br>0.215 mm <sup>-1</sup><br>1080<br>0.20 x 0.10 x 0.05 mm <sup>3</sup><br>1.88 to 23.50°.<br>-9<=h<=9, -29<=k<=30, -17580<br>4176 [R(int) = 0.0930]<br>99.9 %<br>Semi-empirical from equiv<br>0.9893 and 0.9583<br>Full-matrix least-squares<br>4176 / 258 / 353<br>1.009<br>R1 = 0.0977, wR2 = 0.237<br>R1 = 0.1966, wR2 = 0.276<br>0.009(2)<br>1.263 and -0.347 e.Å <sup>-3</sup> |  |

 $\mathsf{R1} = \Sigma ||\mathsf{F}_{o}| - |\mathsf{F}_{c}|| / \Sigma |\mathsf{F}_{o}|, \ \mathsf{wR2} = [\Sigma(\mathsf{w}(\mathsf{F}_{o}{}^{2} - \mathsf{F}_{c}{}^{2})^{2}) / \Sigma(\mathsf{w}(\mathsf{F}_{o}{}^{2})^{2})]^{\frac{1}{2}}$ 





**Figure S6**. ORTEP view of molecular structure of complex salt **2a** with thermal ellipsoids drawn at the 30% level. Most of the hydrogen atoms are omitted for clarity.

 Table S2. Crystal data and structure refinement for 2a.

| Empirical formula                 | $C_{63}H_{62}AgCl_7N_6P_2Pd_2$                                                                                                     |                               |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
|                                   | [2(C <sub>31</sub> H <sub>30</sub> CIN <sub>3</sub> PPd), 0.5(Ag <sub>2</sub> Cl <sub>6</sub> ), CH <sub>2</sub> Cl <sub>2</sub> ] |                               |  |
| Formula weight                    | 1533.95                                                                                                                            |                               |  |
| Temperature                       | 193(2) K                                                                                                                           |                               |  |
| Wavelength                        | 0.71073 Å                                                                                                                          |                               |  |
| Crystal system                    | Triclinic                                                                                                                          |                               |  |
| Space group                       | PĪ                                                                                                                                 |                               |  |
| Unit cell dimensions              | <i>a</i> = 11.9582(4) Å                                                                                                            | $\alpha = 76.776(2)^{\circ}.$ |  |
|                                   | <i>b</i> = 14.6903(5) Å                                                                                                            | $\beta = 84.078(2)^{\circ}.$  |  |
|                                   | <i>c</i> = 18.8464(6) Å                                                                                                            | $\gamma = 79.620(2)^{\circ}.$ |  |
| Volume                            | 3163.56(18) Å <sup>3</sup>                                                                                                         |                               |  |
| Z                                 | 2                                                                                                                                  |                               |  |
| Density (calculated)              | 1.610 Mg/m <sup>3</sup>                                                                                                            |                               |  |
| Absorption coefficient            | 1.260 mm <sup>-1</sup>                                                                                                             |                               |  |
| F(000)                            | 1540                                                                                                                               |                               |  |
| Crystal size                      | 0.20 x 0.20 x 0.05 mm <sup>3</sup>                                                                                                 |                               |  |
| Theta range for data collection   | 2.00 to 25.25°.                                                                                                                    |                               |  |
| Index ranges                      | -13<=h<=14, -17<=k<=17, -22<=l<=21                                                                                                 |                               |  |
| Reflections collected             | 40011                                                                                                                              |                               |  |
| Independent reflections           | 11449 [R(int) = 0.0306]                                                                                                            |                               |  |
| Completeness to theta = 25.25°    | 99.7 %                                                                                                                             |                               |  |
| Absorption correction             | Semi-empirical from equivalents                                                                                                    |                               |  |
| Max. and min. transmission        | 0.9397 and 0.7867                                                                                                                  |                               |  |
| Refinement method                 | Full-matrix-block least-sq                                                                                                         | uares on F <sup>2</sup>       |  |
| Data / restraints / parameters    | 11449 / 45 / 736                                                                                                                   |                               |  |
| Goodness-of-fit on F <sup>2</sup> | 1.065                                                                                                                              |                               |  |
| Final R indices [I>2sigma(I)]     | R1 = 0.0541, wR2 = 0.15                                                                                                            | 13                            |  |
| R indices (all data)              | R1 = 0.0694, wR2 = 0.1596                                                                                                          |                               |  |
| Largest diff. peak and hole       | 3.525 and -1.550 e.Å <sup>-3</sup>                                                                                                 |                               |  |

 $\mathsf{R1} = \Sigma ||\mathsf{F}_{o}| - |\mathsf{F}_{c}|| / \Sigma |\mathsf{F}_{o}|, \ \mathsf{wR2} = [\Sigma(\mathsf{w}(\mathsf{F}_{o}{}^{2} - \mathsf{F}_{c}{}^{2})^{2}) / \Sigma(\mathsf{w}(\mathsf{F}_{o}{}^{2})^{2})]^{\frac{1}{2}}$ 

X-Ray data for 4b(BAr<sub>F</sub>)



Figure S7. ORTEP view of molecular structure of complex salt  $4b(BAr_F)$  with thermal ellipsoids drawn at the 30% level. Most of the hydrogen atoms are omitted for clarity.

Table S3. Crystal data and structure refinement for 4b(BAr<sub>F</sub>).

| Empirical formula                 | C <sub>71</sub> H <sub>54</sub> BCl <sub>2</sub> F <sub>24</sub> IrN <sub>3</sub> P<br>[C <sub>32</sub> H <sub>12</sub> BF <sub>24</sub> , C <sub>38</sub> H <sub>40</sub> IrN <sub>3</sub> P | , CH <sub>2</sub> Cl <sub>2</sub> ] |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Formula weight                    | 1710.05                                                                                                                                                                                       |                                     |
| Temperature                       | 193(2) K                                                                                                                                                                                      |                                     |
| Wavelength                        | 0.71073 Å                                                                                                                                                                                     |                                     |
| Crystal system                    | Triclinic                                                                                                                                                                                     |                                     |
| Space group                       | Pī                                                                                                                                                                                            |                                     |
| Unit cell dimensions              | a = 12.6720(3) Å                                                                                                                                                                              | α =                                 |
| 102.5910(10)°                     |                                                                                                                                                                                               |                                     |
|                                   | b = 15.6405(3) Å                                                                                                                                                                              | $\beta = 90.3940(10)^{\circ}$       |
|                                   | c = 18.3012(3) Å                                                                                                                                                                              | γ =                                 |
| 100.2620(10)°                     |                                                                                                                                                                                               |                                     |
| Volume                            | 3479.42(12) Å <sup>3</sup>                                                                                                                                                                    |                                     |
| Z                                 | 2                                                                                                                                                                                             |                                     |
| Density (calculated)              | 1.632 Mg/m <sup>3</sup>                                                                                                                                                                       |                                     |
| Absorption coefficient            | 2.128 mm <sup>-1</sup>                                                                                                                                                                        |                                     |
| F(000)                            | 1696                                                                                                                                                                                          |                                     |
| Crystal size                      | 0.40 x 0.40 x 0.20 mm <sup>3</sup>                                                                                                                                                            |                                     |
| Theta range for data collection   | 2.04 to 25.25°.                                                                                                                                                                               |                                     |
| Index ranges                      | -15<=h<=15, -18<=k<=18                                                                                                                                                                        | , -21<=l<=21                        |
| Reflections collected             | 49057                                                                                                                                                                                         |                                     |
| Independent reflections           | 12593 [R(int) = 0.0210]                                                                                                                                                                       |                                     |
| Completeness to theta = 25.25°    | 99.9 %                                                                                                                                                                                        |                                     |
| Absorption correction             | Semi-empirical from equiv                                                                                                                                                                     | alents                              |
| Max. and min. transmission        | 0.6756 and 0.4832                                                                                                                                                                             |                                     |
| Refinement method                 | Full-matrix least-squares                                                                                                                                                                     | on F <sup>2</sup>                   |
| Data / restraints / parameters    | 12593 / 309 / 984                                                                                                                                                                             |                                     |
| Goodness-of-fit on F <sup>2</sup> | 1.056                                                                                                                                                                                         |                                     |
| Final R indices [I>2sigma(I)]     | R1 = 0.0287, wR2 = 0.075                                                                                                                                                                      | 51                                  |
| R indices (all data)              | R1 = 0.0308, wR2 = 0.076                                                                                                                                                                      | 62                                  |
| Largest diff. peak and hole       | 1.379 and -0.934 e.Å <sup>-3</sup>                                                                                                                                                            |                                     |

R1 =  $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ , wR2 =  $[\Sigma (w(F_o^2 - F_c^2)^2) / \Sigma (w(F_o^2)^2)]^{\frac{1}{2}}$ 





**Figure S8**. ORTEP view of molecular structure of complex **7a(CI)** with thermal ellipsoids drawn at the 30% level. Most of the hydrogen atoms are omitted for clarity.

 Table S4. Crystal data and structure refinement for 7a(CI).

| Empirical formula                 | $C_{33}H_{36}CI_5IrN_3P$                                                                    |         |  |
|-----------------------------------|---------------------------------------------------------------------------------------------|---------|--|
|                                   | [C <sub>31</sub> H <sub>32</sub> CllrN <sub>3</sub> P, 2(CH <sub>2</sub> Cl <sub>2</sub> )] |         |  |
| Formula weight                    | 875.07                                                                                      |         |  |
| Temperature                       | 193(2) K                                                                                    |         |  |
| Wavelength                        | 0.71073 Å                                                                                   |         |  |
| Crystal system                    | Orthorhombic                                                                                |         |  |
| Space group                       | Pbca                                                                                        |         |  |
| Unit cell dimensions              | <i>a</i> = 11.7851(6) Å                                                                     | α = 90° |  |
|                                   | b = 14.3274(7) Å                                                                            | β = 90° |  |
|                                   | <i>c</i> = 41.473(2) Å                                                                      | γ = 90° |  |
| Volume                            | 7002.8(6) Å <sup>3</sup>                                                                    |         |  |
| Z                                 | 8                                                                                           |         |  |
| Density (calculated)              | 1.660 Mg/m <sup>3</sup>                                                                     |         |  |
| Absorption coefficient            | 4.268 mm <sup>-1</sup>                                                                      |         |  |
| F(000)                            | 3456                                                                                        |         |  |
| Crystal size                      | 0.50 x 0.30 x 0.20 mm <sup>3</sup>                                                          |         |  |
| Theta range for data collection   | 3.59 to 25.25°.                                                                             |         |  |
| Index ranges                      | -13<=h<=14, -17<=k<=12, -49<=l<=40                                                          |         |  |
| Reflections collected             | 84509                                                                                       |         |  |
| Independent reflections           | 6299 [R(int) = 0.0293]                                                                      |         |  |
| Completeness to theta = 25.25°    | 99.4 %                                                                                      |         |  |
| Absorption correction             | Semi-empirical from equivalents                                                             |         |  |
| Max. and min. transmission        | 0.4823 and 0.2241                                                                           |         |  |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup>                                                 |         |  |
| Data / restraints / parameters    | 6299 / 129 / 419                                                                            |         |  |
| Goodness-of-fit on F <sup>2</sup> | 1.409                                                                                       |         |  |
| Final R indices [I>2sigma(I)]     | R1 = 0.0711, wR2 = 0.164                                                                    | 17      |  |
| R indices (all data)              | R1 = 0.0731, wR2 = 0.1653                                                                   |         |  |
| Largest diff. peak and hole       | 3.417 and -4.932 e.Å <sup>-3</sup>                                                          |         |  |

 $\mathsf{R1} = \Sigma ||\mathsf{F}_{o}| - |\mathsf{F}_{c}|| / \Sigma |\mathsf{F}_{o}|, \ \mathsf{wR2} = [\Sigma(\mathsf{w}(\mathsf{F}_{o}{}^{2} - \mathsf{F}_{c}{}^{2})^{2}) / \Sigma(\mathsf{w}(\mathsf{F}_{o}{}^{2})^{2})]^{\frac{1}{2}}$ 

4. Selected <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H}-NMR spectra of M-CNP complexes



Figure S9. <sup>1</sup>H NMR spectrum of 3a (400 MHz, THF-d<sub>8</sub>).



**Figure S10.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **3a** (101 MHz, THF-*d*<sub>8</sub>).



Figure S11. <sup>1</sup>H NMR spectrum of 4a(CI) (400 MHz, CD<sub>2</sub>CI<sub>2</sub>).



Figure S12. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 4a(CI) (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>).



Figure S13. <sup>1</sup>H NMR spectrum of **6a(CI)** (400 MHz, CD<sub>2</sub>CI<sub>2</sub>).



Figure S14. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 6a(CI) (101 MHz,  $CD_2CI_2$ ).



Figure S15. <sup>1</sup>H NMR spectrum of 7b(CI) (400 MHz, CD<sub>2</sub>CI<sub>2</sub>).



Figure S16. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 7b(CI) (101 MHz,  $CD_2CI_2$ ).



**Figure S17.** <sup>1</sup>H NMR spectrum of **8b** (400 MHz, THF-*d*<sub>8</sub>, 273 K).



**Figure S18.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **8b** (101 MHz, THF-*d*<sub>8</sub>, 273 K).



Figure S19. <sup>1</sup>H NMR spectrum of 9b (400 MHz, THF-*d*<sub>8</sub>).



Figure S20. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 9b (101 MHz, THF- $d_8$ ).