Electronic Supplementary Information

Copper(I) 5-phenylpyrimidine-2-thiolate complexes showing unique optical properties and high visible light-directed catalytic performance

Meng-Juan Zhang,^a Hong-Xi Li,*^a Hai-Yan Li^a and Jian-Ping Lang*^{a,b}

^a State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China

Table of contents

Synthesis	s of [(5-phpyms) ₂ Cu] _n	S4
X-ray Ci	rystallography for [(5-phpyms) ₂ Cu] _n	S4
Crystal S	Structure of [Cu(5-phpyms) ₂] _n .	S4
Table S1	Selected bond lengths (Å) and angles (Å) of $1 \cdot 2MeCN$, 2-5 and $[Cu(5-phpyms)_2]_n$	S5
Fig. S1	View of a portion of the 1D chain of $[Cu(5-phpyms)_2]_n$ extending along the <i>b</i> axis	S7
Fig. S2	PXRD patterns for 1 . (a) simulated; (b) a single-phase polycrystalline sample of 1	S7
Fig. S3	PXRD patterns for 2 . (a) simulated; (b) a single-phase polycrystalline sample of 2	S8
Fig. S4	PXRD patterns for 3 . (a) simulated; (b) a single-phase polycrystalline sample of 3	S 8
Fig. S5	PXRD patterns for 4 . (a) simulated; (b) a single-phase polycrystalline sample of 4	S9
Fig. S6	PXRD patterns for 5 . (a) simulated; (b) a single-phase polycrystalline sample of 5	S9
Fig. S7	PXRD patterns for $[Cu(5-phpyms)_2]_n$. (a) simulated; (b) a single-phase polycrystalling of $[Cu(5-phpyms)_2]_n$.	ine
sample of	f $[Cu(5-phpyms)_2]_n$ S	10
Fig. S8	TGA curves of 1-5 and $[Cu(5-phpyms)_2]_n$	10
Fig. S9	View of the 1D hydrogen-bound structure of 2	11
Fig. S10	View of the 2D hydrogen-bound structure of 4S	11
Fig. S11	The UV-vis spectra of complexes 1-5 in the solid stateS	12
Fig. S12	UV-Vis absorption spectra of 1 in various solvents $(1 \times 10^{-4} \text{ mol/L})$ S	12
Fig. S13	UV-Vis absorption spectra of 1 in CHCl ₃ , black (1×10^{-4} mol/L), red ($c_{CF3COOH} = 1$	0-2
mol/L), g	treen ($c_{CF3COOH} = 10^{-1} \text{ mol/L}$) and blue ($c_{CF3COOH} = 5 \times 10^{-1} \text{ mol/L}$)S	13
Fig. S14	Emission spectrum of 1 in the solid state at room temperatureS	13
Fig. S15	Emission spectra of 1 (1 × 10 ⁻⁶ mol/L) in CHCl ₃ /isopropanol mixtureS	14
Fig. S16	¹ H NMR spectrum of 1 S	15
Fig. S17	¹ H NMR spectrum of 1 with CF ₃ COOHS	15
Fig. S18	¹ H NMR spectrum of 1 after the addition of CF_3COOH and then Et_3N S	16
Fig. S19	¹ H NMR spectrum of CF ₃ COOHS	16
Fig. S20	Solid-state optical diffuse-reflection spectra of 1-5 and $[Cu(5-phpyms)_2]_n$ with BaS	O_4
as backgr	ound derived from the diffuse reflectance data at ambient temperatureS	17
Fig. S21	PXRD patterns of the simulated, experimental and those after different catalytic cyc	les
of compo	ound 5 S	17
Scheme S	S1 Proposed mechanism for the oxidative hydroxylation of arylboronic acidsS	18
¹ H and ¹³	³ CNMR data of the phenolsS	19
Referenc	esS	22
Fig. S22	The ¹ H and ¹³ C NMR spectra for phenolS	23
Fig. S23	The ¹ H and ¹³ C NMR spectra for 4-methoxyphenolS	24

Fig. S24	The ¹ H and ¹³ C NMR spectra for 4-methylphenol	
Fig. S25	The ¹ H and ¹³ C NMR spectra for 3-methoxyphenol	S26
Fig. S26	The ¹ H and ¹³ C NMR spectra for 3-methylphenol	
Fig. S27	The ¹ H and ¹³ C NMR spectra for 2-methoxyphenol	S28
Fig. S28	The ¹ H and ¹³ C NMR spectra for 2-methylphenol	S29
Fig. S29	The ¹ H and ¹³ C NMR spectra for 2,6-dimethylphenol	
Fig. S30	The ¹ H and ¹³ C NMR spectra for 2,4,6-trimethylphenol	
Fig. S31	The ¹ H and ¹³ C NMR spectra for 4-nitrophenol	
Fig. S32	The ¹ H and ¹³ C NMR spectra for 4-acetylphenol	
Fig. S33	The ¹ H and ¹³ C NMR spectra for 4-fluorophenol	
Fig. S34	The ¹ H and ¹³ C NMR spectra for 2-naphthyphenol	
Fig. S35	The ¹ H and ¹³ C NMR spectra for p-dihydroxybenzene	
Fig. S36	The ¹ H and ¹³ C NMR spectra for m-dihydroxybenzene	
Fig. S37	The ¹ H and ¹³ C NMR spectra for 4-ethylphenol	

Synthesis of [(5-phpyms)₂Cu]_n. To a Pyrex glass tube were added CuBr (3.6 mg, 0.025 mmol), 5-phpymtH (4.7 mg, 0.025 mmol), 2 mL of MeCN and 0.1 mL of DMSO. The tube was sealed and heated in an oven at 120 °C for 48 h and then cooled to room temperature at the rate of 5 °C h⁻¹ to form a large amount of blue crystals of [(5-phpyms)₂Cu]_n, which were collected by filtration, washed with Et₂O and dried in air. Yield: 6.1 mg (46 %). Anal. Calcd (%) for C₂₀H₁₄CuN₄O₆S₂: C 44.98, H 2.64, N 10.49. Found: C 44.54, H 2.81, N 10.62. IR (KBr pellet, ν/cm^{-1}): 3059 (w), 1586 (w), 1454 (w), 1429 (m), 1285 (s) 1229 (w), 1211 (w), 1192 (w), 1007 (s), 778 (m), 764 (m), 642 (m).

X-ray Crystallography for [(5-phpyms)₂Cu]_n. Single crystal of [(5-phpyms)₂Cu]_n suitable for X-ray analysis was obtained directly from the above preparations. The crystal data were collected on a Bruker APEX-II CCD using an enhanced X-ray source Mo K α ($\lambda = 0.71073$ Å). Single crystal of [(5-phpyms)₂Cu]_n was mounted on glass fibers with grease cooled in a liquid nitrogen stream at 273 K. The collected data were reduced by using the program *Bruker APEX2* and an absorption correction (multi-scan) was applied. The reflection data were also corrected for Lorentz and polarization effects. The crystal structure of [(5-phpyms)₂Cu]_n was solved by direct methods and refined on F^2 by full-matrix least-squares methods with the *SHELXL-97* program.^{S1} All non-H atoms were refined anisotropically. All other hydrogen atoms were placed in the geometrically idealized positions and constrained to ride on their parent atoms. Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 1474578.

Crystal Structure of [**Cu**(**5-phpyms**)_{**2**]_{**n**}. Compound [Cu(5-phpyms)₂]_{**n**} crystallizes in the monoclinic space group $P2_1/c$, and its asymmetric unit contains half a discrete [Cu(5-phpyms)₂] unit. Compound [Cu(5-phpyms)₂]_{**n**} has a 1D chain (extending along the *b* axis) in which each Cu atom is bridged by two pairs of 5-phpyms ligands (Fig. S1). Each 5-phpyms in [Cu(5-phpyms)₂]_{**n**} takes a μ_3 - κ^1 (N)- κ^1 (O)- κ^1 (O') chelating/bridging mode to bind at two Cu atoms. Each Cu adopts an octahedral geometry defined by four O and two N from four 5-phpyms ligands. Cu(1)-N(2) bond distance is close to that in [CuBr₂(dpds)] (dpds = 2,2'-dipyridyldisulfide).^{S2} Cu(1)-O(1) bond length is much shorter than the Cu(1)-O(2A) bond distance and that in [Cu(en)₂(1,5-nds)·2H₂O]_{*n*} (2.8128(13) Å; 1,5-nds = naphthalenedisulfonate)^{S3} and {[Cu₃(L)₂(py)₁₂]·py}_{*n*} (2.461(3) Å; H₃L = 1,3,5-Tri(4-sulfonophenyl)-benzene).^{S4}}

Complex $1 \cdot 2$ MeCN			
Cu(1)-N(4)	1.9943(15)	Cu(1)-S(3)	2.2619(5)
Cu(1)-S(1)	2.2635(5)	Cu(2)-N(2)	2.0287(15)
Cu(2)-S(2)	2.2304(5)	Cu(2A)-S(3)	2.2865(5)
Cu(3)-N(5)	2.0236(15)	Cu(3)-S(2)	2.2248(5)
Cu(3A)-S(1)	2.2820(5)	$Cu(2A)\cdots Cu(3)$	3.0335(4)
$Cu(1)\cdots Cu(2)$	2.7758(4)	$Cu(1)\cdots Cu(3)$	2.8388(4)
N(4)-Cu(1)-S(3)	128.33(5)	N(4)-Cu(1)-S(1)	131.09(5)
S(3)-Cu(1)-S(1)	99.082(18)	N(2)-Cu(2)-S(2)	133.54(5)
N(2)-Cu(2)-S(3A)	109.93(5)	S(2)-Cu(2)-S(3A)	110.535(19)
N(5)-Cu(3)-S(2)	133.38(4)	N(5)-Cu(3)-S(1A)	110.57(4)
S(2)-Cu(3)-S(1A)	112.145(19)		
Complex 2			
Br(1)-Cu(1)	2.4256(8)	Cu(1)-N(1)	2.022(3)
Cu(1)-S(2)	2.2342(13)	Cu(2)-N(3)	1.987(3)
Cu(2)-S(1)	2.2327(13)	Cu(2)-S(2A)	2.3582(14)
Cu(1)-Cu(2)	2.6444(8)		
N(1)-Cu(1)-S(2)	138.82(11)	N(1)-Cu(1)-Br(1)	103.48(10)
S(2)-Cu(1)-Br(1)	117.69(4)	N(3)-Cu(2)-S(1)	137.38(11)
N(3)-Cu(2)-S(2A)	111.29(11)	S(1)-Cu(2)-S(2A)	109.47(5)
Complex 3			
Cu(1)-N(3A)	1.958(7)	Cu(1)- $S(1A)$	2.177(2)
Cu(1)-S(1)	2.670(2)	Cu(2)-N(1)	2.040(7)
Cu(2)-S(2)	2.268(2)	Cu(2)-Br(1)	2.6028(13)
Cu(2)-Br(2)	2.6365(14)	Cu(3)-N(4B)	2.020(7)
Cu(3)- $S(1A)$	2.245(2)	Cu(3)- $S(2)$	2.529(2)
Cu(3)-Br(1)	2.5591(14)	Cu(4)-N(2C)	1.991(7)
Cu(4)-S(2D)	2.229(2)	Cu(4)-Br(2)	2.4295(14)
$Cu(4)\cdots Cu(3E)$	2.7794(17)	$Cu(1)\cdots Cu(1A)$	2.527(2)
$Cu(2)\cdots Cu(1A)$	2.7040(16)	$Cu(2)\cdots Cu(3)$	3.0058(16)
N(3A)-Cu(1)-S(1A)	141.6(2)	N(3A)-Cu(1)-S(1)	97.9(2)
S(1A)-Cu(1)-S(1)	118.12(7)	N(1)-Cu(2)-S(2)	157.9(2)
N(1)-Cu(2)-Br(1)	91.6(2)	S(2)-Cu(2)-Br(1)	106.59(7)
N(1)-Cu(2)-Br(2)	101.6(2)	S(2)-Cu(2)-Br(2)	89.74(6)
Br(1)-Cu(2)-Br(2)	94.11(4)	N(4B)-Cu(3)-S(1A)	153.0(2)
N(4B)-Cu(3)-S(2)	94.8(2)	S(1)-Cu(3)-S(2A)	108.27(8)
N(4B)-Cu(3)-Br(1)	102.2(2)	S(1)-Cu(3)-Br(1A)	87.58(7)
S(2)-Cu(3)-Br(1)	100.42(7)	N(2C)-Cu(4)-S(2D)	135.7(2)

Table S1 Selected bond lengths (Å) and angles (°) of 1.2 MeCN, 2-5 and $[(5-phpyms)_2Cu]_n$ Complex 1.2 MeCN

N(2C)-Cu(4)-Br(2)	105.66(19)	S(2)-Cu(4)-Br(2D)	118.36(7)
Complex 4			
I(1)-Cu(1)	2.6611(10)	I(1)-Cu(2)	2.8103(10)
Cu(1)-N(1)	1.984(5)	Cu(1)-S(2A)	2.2061(19)
Cu(2)-N(3)	2.039(5)	Cu(2)-S(1A)	2.252(2)
Cu(2)-Cu(1A)	2.5678(12)	Cu(2)-I(1A)	2.7715(11)
Cu(2)-Cu(2A)	2.997(2)	Cu(1)-Cu(1B)	2.9539(18)
N(1)-Cu(1)-S(2A)	130.20(16)	N(1)-Cu(1)-I(1)	112.66(15)
S(2A)-Cu(1)-I(1)	115.78(6)	N(3)-Cu(2)-S(1A)	134.03(17)
N(3)-Cu(2)-I(1A)	98.66(15)	S(1A)-Cu(2)-I(1A)	114.75(6)
N(3)-Cu(2)-I(1)	102.05(14)	S(1A)-Cu(2)-I(1)	91.77(5)
I(1A)-Cu(2)-I(1)	115.06(4)		
Complex 5			
I(1)-Cu(2)	2.5891(9)	I(1)-Cu(1)	2.9383(10)
Cu(1)-N(1)	1.968(6)	Cu(1)-S(1A)	2.2239(16)
Cu(2)-I(2)	2.5496(16)	Cu(1)-Cu(1A)	2.741(2)
Cu(2)-Cu(2B)	2.665(3)	Cu(1)-Cu(2)	2.6508(14)
N(1)-Cu(1)-S(1A)	149.26(16)	N(1)-Cu(1)-I(1)	103.57(16)
S(1A)-Cu(1)-I(1)	105.19(7)	I(2)-Cu(2)-I(1)	119.88(3)
I(2)-Cu(2)-I(1B)	119.88(3)	I(1)-Cu(2)-I(1B)	118.06(5)
Complex [(5-phpyms) ₂	Cu]n		
Cu(1)-N(2)	1.975(7)	Cu(1) O(1)	1.988(6) . ?
Cu(1)-O(2A)	2.414(6)	Cu(1) O(2A)	87.1(3)
N(2)-Cu(1)-O(1B)	94.4(3)	N(2B) Cu(1) O(1B)	85.6(3)
N(2)-Cu(1)-O(1)	85.6(3)	N(2B) Cu(1) O(1)	94.4(3)
O(1B)-Cu(1)-O(1)	180.000(3)	N(2) Cu(1) O(2C)	92.9(3)
N(2B)-Cu(1)-O(2C)	87.1(3)	O(1B) Cu(1) O(2C)	90.3(2)
O(1)-Cu(1)-O(2C)	89.7(2)	N(2) Cu(1) N(2B)	180.000(1)
N(2B)-Cu(1)-O(2A)	92.9(3)	O(1B) Cu(1) O(2C)	89.7(2)
O(1)-Cu(1)-O(2A)	90.3(2)	O(2C) Cu(1) O(2A)	180.000(1)

Symmetry codes: (A) 1 - x, 1 - y, 1 - z for $1 \cdot 2$ MeCN. (A) - x, 1 - y, 2 - z for 2. (A) - x, 1 - y, 1 - z; (B) - x, - y, 1 - z; (C) 1 - x, 1 - y, 1 - z; (D) 1 - x, - y, 1 - z; (E) 1 + x, y, z for 3. (A) -x, 5/2 + y, 3/2 - z, (B) 1 - x, 5/2 + y, 3/2 - z for 4. (A) x, -y, 1 + z; (B) -x, +y, 1 - z for 5. (A) x, 1 + y, z, (B) 1 - x, 5/2 + y, 3/2 - z, (C) 1 - x, 3/2 + y, 3/2 - z for [(5-phpyms)₂Cu]_n.

Fig. S1 View of a portion of the 1D chain of $[Cu(5-phpyms)_2]_n$ extending along the *b* axis.

Fig. S2 PXRD patterns for 1. (a) simulated; (b) a single-phase polycrystalline sample of 1.

Fig. S3 PXRD patterns for 2. (a) simulated; (b) a single-phase polycrystalline sample of 2.

Fig. S4 PXRD patterns for 3. (a) simulated; (b) a single-phase polycrystalline sample of 3.

Fig. S5 PXRD patterns for 4. (a) simulated; (b) a single-phase polycrystalline sample of 4.

Fig. S6 PXRD patterns for 5. (a) simulated; (b) a single-phase polycrystalline sample of 5.

Fig. S7 PXRD patterns for [(5-phpyms)₂Cu]_n. (a) simulated; (b) a single-phase polycrystalline sample of [(5-phpyms)₂Cu]_n.

Fig. S8 TGA curves of **1-5** and [(5-phpyms)₂Cu]_n.

Fig. S9 View of the 1D hydrogen-bound structure of 2.

Fig. S10 View of the 2D hydrogen-bound structure of 4.

Fig. S11 The UV-vis spectra of complexes 1-5 in the solid state.

Fig. S12 UV-Vis absorption spectra of **1** in various solvents $(1 \times 10^{-4} \text{ mol/L})$

Fig. S13 UV-Vis absorption spectra of **1** in CHCl₃, black (1×10^{-4} mol/L), red ($c_{CF3COOH} = 10^{-2}$ mol/L), green ($c_{CF3COOH} = 10^{-1}$ mol/L) and blue ($c_{CF3COOH} = 5 \times 10^{-1}$ mol/L).

Fig. S14 Emission spectrum of 1 in the solid state at room temperature.

Fig. S15 Emission spectra of $1 (1 \times 10^{-6} \text{ mol/L})$ in CHCl₃/isopropanol mixture.

Fig. S18 1 H NMR spectrum of **1** after the addition of CF₃COOH and then Et₃N.

- 8.14

Fig. S19 ¹H NMR spectrum of CF_3COOH .

Fig. S20 Solid-state optical diffuse-reflection spectra of **1-5** and [(5-phpyms)₂Cu]_n with BaSO₄ as background derived from the diffuse reflectance data at ambient temperature.

Fig. S21 PXRD patterns of the simulated, experimental and those after different catalytic cycles of compound 5.

Scheme S1 Proposed mechanism for the oxidative hydroxylation of arylboronic acids.

¹H and ¹³CNMR data of the phenols

Phenol

¹H NMR (400 MHz, DMSO-d₆) δ 9.32 (s, 1H), 7.36 - 7.02 (m, 2H), 6.75 (d, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 157.20, 129.10, 118.68, 114.77.

4-methoxyphenol

¹H NMR (400 MHz, DMSO-d₆) δ 8.88 (s, 1H), 6.74 (d, *J* = 8.7 Hz, 2H), 6.67 (d, *J* = 8.6 Hz, 2H), 3.65 (s, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 151.98, 151.09, 115.69, 114.39, 55.31.

4-methylphenol

OH

¹H NMR (400 MHz, DMSO-d₆) δ 9.06 (s, 1H), 6.95 (d, *J* = 7.9 Hz, 2H), 6.64 (d, *J* = 8.1 Hz, 2H), 2.17 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 154.55, 129.75, 127.17, 114.76, 19.96.

3-methoxyphenol

OH

¹H NMR (400 MHz, DMSO-d₆) δ 9.41 (s, 1H), 7.06 (t, *J* = 7.9 Hz, 1H), 6.39 (t, *J* = 11.1 Hz, 3H), 3.69 (s, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 160.7, 158.8, 130.0, 108.0, 104.7, 101.4, 54.9.

3-methylphenol

¹H NMR (400 MHz, DMSO-d₆) δ 9.98 (s, 1H), 7.51 (d, *J* = 6.2 Hz, 2H), 7.41 (s, 1H), 7.30 - 7.25 (m, 1H), 3.82 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 157.45, 138.48, 129.30, 119.86, 116.26, 112.71, 21.17.

2-methoxyphenol

ОН

¹H NMR (400 MHz, DMSO-d₆) δ 8.90 (s, 1H), 6.92 – 6.87 (m, 1H), 6.80 – 6.71 (m, 3H), 3.75 (s, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 147.7, 146.6, 120.9, 119.3, 115.6, 112.4, 55.6

2-methylphenol

¹H NMR (400 MHz, DMSO-d₆) δ 9.24 (s, 1H), 7.11 - 6.96 (m, 2H), 6.85 (s, 1H), 6.70 (d, *J* = 6.0 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 155.51, 130.63, 126.68, 123.89, 118.86, 114.70, 16.06.

2,6-dimethylphenol

¹H NMR (400 MHz, DMSO-d₆) δ 8.17 (s, 1H), 6.90 (d, J = 7.4 Hz, 2H), 6.64 (t, J = 7.4 Hz, 1H), 2.10 (s, 6H). ¹³C NMR (151 MHz, DMSO-d₆) δ 152.97, 127.89, 124.27, 119.14, 16.48.

2,4,6-trimethylphenol

ΟН

¹H NMR (400 MHz, DMSO-d₆) δ 7.89 (s, 1H), 6.69 (s, 2H), 2.11 (s, 9H). ¹³C NMR (151 MHz, DMSO-d₆) δ 150.75, 128.79, 127.47, 123.97, 19.66, 16.06.

4-nitrophenol

OH O₂N

¹H NMR (400 MHz, DMSO-d₆) δ 11.03 (s, 1H), 8.11 (d, *J* = 7.8 Hz, 2H), 6.92 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (151 MHz, DMSO-d₆) δ 163.89, 139.61, 126.16, 115.77.

4-acetylphenol

¹H NMR (400 MHz, DMSO-d₆) δ 10.34 (s, 1H), 7.84 (d, *J* = 8.2 Hz, 2H), 6.85 (d, *J* = 8.2 Hz, 2H), 2.47 (s, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 195.75, 161.79, 130.69, 128.49, 115.13, 25.86.

4-fluorophenol

¹H NMR (400 MHz, DMSO-d₆) δ 9.34 (s, 1H), 7.00–6.94 (m, 2H), 6.76–6.71 (m, 2H). ¹³C NMR (101 MHz, DMSO-d₆) δ 156.7, 154.3, 153.6 (d), 116.1 (d), 115.7, 115.5.

2-naphthylphenol

¹H NMR (400 MHz, DMSO-d₆) δ 9.71 (s, 1H), 7.78 - 7.72 (m, 2H), 7.67 (d, *J* = 8.2 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.25 (t, *J* = 7.4 Hz, 1H), 7.12 - 7.05 (m, 2H). ¹³C NMR (101 MHz, DMSO-d₆) δ 155.25, 134.57, 129.26, 127.70, 127.51, 126.07, 125.95, 122.60, 118.58, 108.61.

hydroquinone

OH

¹H NMR (400 MHz, DMSO-d₆) δ 8.61 (s, 2H), 6.55 (s, 4H). ¹³C NMR (101 MHz, DMSO-d₆) δ 149.73, 115.46.

m-dihydroxybenzene

HO ЮH

¹H NMR (400 MHz, DMSO-d₆) δ 9.14 (s, 2H), 6.91 (t, *J* = 7.8 Hz, 1H), 6.18 (d, *J* = 7.7 Hz, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 158.4, 129.7, 106.2, 102.5.

4-ethylphenol

¹H NMR (400 MHz, DMSO-d₆) δ 9.09 (s, 1H), 6.98 (t, *J* = 5.6 Hz, 2H), 6.67 (dd, *J* = 6.5, 2.0 Hz, 2H), 2.47 (t, *J* = 7.6 Hz, 2H), 1.12 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 155.2, 133.8, 128.5, 115.0, 27.3, 16.0.

References

- [S1] G. M. Sheldrick, Acta Cryst. 2015, C71, 3.
- [S2] Kinoshita, I.; Wright, L. J.; Kubo, S.; Kimura, K.; Sakata, A.; Yano, T.;Miyamoto, R.; Nishioka, T.; Isobe, K. *Dalton Trans.* 2003, 1993.
- [S3] Cai, J. W.; Chen, C. H.; Liao, C. Z.; Yao, J. H.; Hu, X. P.; Chen, X. M. J. Chem. Soc., Dalton Trans. 2001, 1137.
- [S4] Mahmoudkhani, A. H.; Shimizu, G. K. H. Inorg. Chem. 2007, 46, 1593.

Fig. S24 The ¹H and ¹³C NMR spectra for 4-methylphenol

Fig. S26 The 1 H and 13 C NMR spectra for 3-methylphenol

S28

Fig. S28 The ¹H and ¹³C NMR spectra for 2-methylphenol

Fig. S31 The ¹H and ¹³C NMR spectra for 4-nitrophenol

Fig. S32 The 1 H and 13 C NMR spectra for 4-acetylphenol

Fig. S33 The ¹H and ¹³C NMR spectra for 4-fluorophenol

Fig. S34 The 1 H and 13 C NMR spectra for 2-naphthyphenol

Fig. S37 The ¹H and ¹³C NMR spectra for 4-ethylphenol