# Cubane-like tetranuclear Cu(II) complexes bearing a $Cu_4O_4$ core: crystal structure, magnetic properties, DFT calculations and phenoxazinone synthase like activity

Shipra Sagar,<sup>a‡</sup> Swaraj Sengupta,<sup>a,b,‡</sup> Shyamal K. Chattopadhyay,<sup>b</sup> Antonio J. Mota,\*<sup>c</sup> Arturo Espinosa Ferao,\*<sup>d</sup> Eric Riviere,\*<sup>e</sup> William Lewis,<sup>f</sup> Subhendu Naskar\*<sup>a</sup>

#### INDEX

|                                                                                                                  | Page       |
|------------------------------------------------------------------------------------------------------------------|------------|
| Figure S1: <sup>1</sup> H- NMR spectra of pro-ligand 1a.                                                         | S2         |
| Figure S2: Mass spectrum of pro-ligand 1a.                                                                       | S2         |
| Figure S3: <sup>1</sup> H- NMR spectra of pro-ligand 1b.                                                         | <b>S</b> 3 |
| Figure S4: Mass spectrum of pro-ligand 1b.                                                                       | S3         |
| Figure S5: FTIR spectrum of complex 3a.                                                                          | S4         |
| Figure S6: FTIR spectrum of complex 3b.                                                                          | S4         |
| Table S1: Crystal refinement parameters for complexes 3a, 3b and pro-ligand 1a.                                  | <b>S</b> 5 |
| Table S2: Selected bond lengths and angles for complexes 3a and 3b.                                              | S5         |
| Figure S7: Evolution of the vis-UV spectrum of complex <b>3a</b> after addition of OAPH                          | S7         |
| Figure S8: Lineweaver-Burk plot for the oxidation of 2-aminophenol catalyzed by complex 3a.                      | S7         |
| Figure S9: Evolution of the vis-UV spectrum of complex 3b after addition of OAPH.                                | <b>S</b> 8 |
| Figure S10: Lineweaver-Burk plot for the oxidation of 2-aminophenol catalyzed by complex <b>3b.</b>              | S8         |
| <b>Figure S11</b> : Temperature dependence of $\chi$ and $\chi$ T for complex <b>3a.</b>                         | S9         |
| Equations obtained for the determination of magnetic coupling constants in <b>3a-model</b> and <b>3b-model</b> . | S10        |
| Table S3: Cartesian coordinates of the calculated model compounds.                                               | S11        |



Figure S1. <sup>1</sup>H-NMR spectrum of pro-ligand 1a.



Figure S2. Mass spectrum of pro-ligand 1a.



Figure S3. <sup>1</sup>H-NMR spectrum of pro-ligand 1b.



Figure S4. Mass spectrum of pro-ligand 1b.



Figure S5: FTIR spectrum of complex 3a.



Figure S6: FTIR spectrum of complex 3b.

|                                       | 3a·2DMSO.2H <sub>2</sub> O                             | 3b·2DMSO.2H <sub>2</sub> O                                                                    | 1a                                                                                           |
|---------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Empirical formula                     | $C_{44}H_{44}Cl_4Cu_4N_8O_{12}S_6$                     | $C_{44}H_{44}Br_4Cu_4N_8O_{12}S_6$                                                            | C <sub>10</sub> H <sub>7</sub> N <sub>2</sub> OSCl                                           |
| Formula weight                        | 1465.19                                                | 1643.03                                                                                       | 238.69                                                                                       |
| Temperature/K                         | 120(2)                                                 | 120(2)                                                                                        | 120(2)                                                                                       |
| Crystal system                        | triclinic                                              | triclinic                                                                                     | monoclinic                                                                                   |
| Space group                           | P-1                                                    | P-1                                                                                           | $P2_1/c$                                                                                     |
| a/Å                                   | 14.5168(9)                                             | 14.5404(14)                                                                                   | 14.7035(4)                                                                                   |
| b/Å                                   | 14.9751(10)                                            | 15.0453(15)                                                                                   | 3.79321(9)                                                                                   |
| c/Å                                   | 15.6509(10)                                            | 15.6677(16)                                                                                   | 17.8136(5)                                                                                   |
| a/°                                   | 81.622(5)                                              | 81.325(9)                                                                                     | 90                                                                                           |
| β/°                                   | 71.061(6)                                              | 70.620(9)                                                                                     | 92.866(3)                                                                                    |
| $\gamma/^{\circ}$                     | 71.633(6)                                              | 71.468(9)                                                                                     | 90                                                                                           |
| Volume/Å <sup>3</sup>                 | 3050.6(4)                                              | 3061.7(6)                                                                                     | 992.28(5)                                                                                    |
| Z                                     | 2                                                      | 2                                                                                             | 4                                                                                            |
| $\rho_{calc}g/cm^3$                   | 1.595                                                  | 1.782                                                                                         | 1.598                                                                                        |
| µ/mm <sup>-1</sup>                    | 5.617                                                  | 7.049                                                                                         | 5.145                                                                                        |
| F(000)                                | 1480.0                                                 | 1624.0                                                                                        | 488.0                                                                                        |
| Crystal size/mm <sup>3</sup>          | $0.2084 \times 0.1962 \times 0.0433$                   | $0.209 \times 0.0662 \times 0.0264$                                                           | 0.3147 x 0.0747 x 0.0481                                                                     |
| Radiation                             | $CuK\alpha$ ( $\lambda = 1.54184$ )                    | $CuK\alpha (\lambda = 1.54184)$                                                               | $CuK\alpha (\lambda = 1.54184)$                                                              |
| $2\Theta$ range for data collection/° | 5.978 to 148.544                                       | 6.728 to 133.202                                                                              | 9.944 to 148.096                                                                             |
| Index ranges                          | $-18 \le h \le 17, -13 \le k \le 18, -19 \le l \le 19$ | $\begin{array}{l} -17 \leq h \leq 12,  -17 \leq k \leq 17, \\ -18 \leq l \leq 18 \end{array}$ | $\begin{array}{l} -17 \leq h \leq 17, \ -4 \leq k \leq 2, \\ -21 \leq l \leq 19 \end{array}$ |
| Reflections collected                 | 21882                                                  | 32366                                                                                         | 4575                                                                                         |
| Independent reflections               | 11993<br>$[R_{int} = 0.0464, R_{sigma} = 0.0513]$      | $10828  [R_{int} = 0.1181, R_{sigma} = 0.1041]$                                               | 1965<br>[ $R_{int} = 0.0260, R_{sigma} = 0.0269$ ]                                           |
| Data/restraints/parameters            | 11993/786/726                                          | 10828/1351/723                                                                                | 1965/0/139                                                                                   |
| Goodness-of-fit on F <sup>2</sup>     | 1.029                                                  | 1.221                                                                                         | 1.050                                                                                        |
| Final R indexes [I>=2o (I)]           | $R_1 = 0.0704, wR_2 = 0.1821$                          | $R_1 = 0.1273, wR_2 = 0.3317$                                                                 | $R_1 = 0.0381$ , $wR_2 = 0.1092$                                                             |
| Final R indexes [all data]            | $R_1 = 0.0845, wR_2 = 0.1941$                          | $R_1 = 0.1781$ , $wR_2 = 0.3879$                                                              | $R_1 = 0.0419$ , $wR_2 = 0.1145$                                                             |
| Largest diff. peak/hole / e Å-3       | 1.80/-1.15                                             | 2.63/-1.09                                                                                    | 0.58/-0.40                                                                                   |

# Table S1. Crystal refinement parameters for complexes 3a, 3b and pro-ligand 1a

| Table S2: Selected bond | lengths (Å | ) and angles (°) | for complexes 3a and 3b |
|-------------------------|------------|------------------|-------------------------|
|-------------------------|------------|------------------|-------------------------|

|                | $3a \cdot 2DMSO \cdot 2H_2O$ | $3b \cdot 2DMSO \cdot 2H_2O$ |
|----------------|------------------------------|------------------------------|
| Bond distances |                              |                              |
| Cu1-O8         | 1.947(4)                     | 1.965(9)                     |
| Cu1-O15        | 1.910(4)                     | 1.909(9)                     |
| Cu1-O48        | 1.979(3)                     | 1.963(8)                     |
| Cu1-O68        | 2.403(3)                     | 2.400(9)                     |
| Cu1-N41        | 1.983(5)                     | 2.000(12)                    |
| Cu2-O8         | 1.985(3)                     | 1.973(8)                     |
| Cu2-O28        | 1.947(4)                     | 1.966(9)                     |
| Cu2-O35        | 1.897(3)                     | 1.900()                      |
| Cu2-O48        | 2.401(4)                     | 2.409(9)                     |
| Cu2-N1         | 1.968(5)                     | 1.990(12)                    |
| Cu3-O8         | 2.375(4)                     | 2.378(9)                     |
| Cu3-O28        | 1.989(3)                     | 1.985(8)                     |
| Cu3-O68        | 1.944(4)                     | 1.969(9)                     |
| Cu3-O75        | 1.920(3)                     | 1.925(9)                     |
| Cu3-N21        | 1.965(4)                     | 2.015(11)                    |
| Cu4-O28        | 2.381(4)                     | 2.401(9)                     |
| Cu4-O48        | 1.953(4)                     | 1.955(9)                     |
| Cu4-O55        | 1.909(4)                     | 1.912(10)                    |
|                |                              |                              |

| Cu4-O68     | 1.982(3)   | 1.962(8)  |
|-------------|------------|-----------|
| Cu4-N61     | 1.971(5)   | 1.995(13) |
| C10-O15     | 1.323(7)   | 1.309(18) |
| C30-O35     | 1.326(7)   | 1.292(16) |
| C50-O55     | 1.320(8)   | 1.290(19) |
| C70-O75     | 1.335(7)   | 1.326(17) |
|             |            | ( )       |
| Bond angles |            |           |
| O8-Cu1-O48  | 84.03(14)  | 84.00(4)  |
| O8-Cu1-O68  | 81.55(13)  | 81.7(3)   |
| O8-Cu1-N41  | 172.61(16) | 172.2(4)  |
| O15-Cu1-O8  | 94.68(16)  | 94.1(4)   |
| O15-Cu1-O48 | 172.41(17) | 172.8(4)  |
| O15-Cu1-O68 | 114.23(15) | 114.3(4)  |
| O15-Cu1-N41 | 92.48(18)  | 93.6(4)   |
| O48-Cu1-O68 | 73.03(13)  | 72.4(3)   |
| O48-Cu1-N41 | 89.10(16)  | 88.4(4)   |
| N41-Cu1-O68 | 93.86(16)  | 94.3(4)   |
| O8-Cu2-O48  | 72.93(13)  | 72.9(3)   |
| O28-Cu2-O8  | 84.29(14)  | 84.9(3)   |
| O28-Cu2-O48 | 81.66(13)  | 82.1(3)   |
| O28-Cu2-N1  | 174.05(15) | 174.9(4)  |
| O35-Cu2-O8  | 172.90(17) | 171.7(4)  |
| O35-Cu2-O28 | 94.70(15)  | 94.1(4)   |
| O35-Cu2-O48 | 113.93(15) | 115.2(4)  |
| O35-Cu2-N1  | 91.24(17)  | 91.0(4)   |
| N1-Cu2-O8   | 89.85(15)  | 90.1(4)   |
| N1-Cu2-O48  | 95.68(16)  | 95.2(4)   |
| O28-Cu3-O8  | 73.80(13)  | 74.5(3)   |
| O68-Cu3-O8  | 82.34(13)  | 82.2(3)   |
| O68-Cu3-O28 | 84.72(14)  | 84.9(3)   |
| O68-Cu3-N21 | 174.30(15) | 174.1(4)  |
| O75-Cu3-O8  | 112.85(15) | 112.6(4)  |
| O75-Cu3-O28 | 172.73(17) | 172.3(4)  |
| O75-Cu3-O68 | 93.14(15)  | 93.2(4)   |
| O75-Cu3-N21 | 92.40(16)  | 92.6(4)   |
| N21-Cu3-O8  | 96.72(16)  | 96.6(4)   |
| N21-Cu3-O28 | 89.62(15)  | 89.2(4)   |
| O48-Cu4-O28 | 82.05(14)  | 82.6(3)   |
| O48-Cu4-O68 | 83.86(14)  | 83.2(4)   |
| O48-Cu4-N61 | 172.54(18) | 171.7(5)  |
| O55-Cu4-O28 | 111.36(17) | 112.6(4)  |
| O55-Cu4-O48 | 94.10(18)  | 94.9(4)   |
| O55-Cu4-O68 | 173.84(18) | 172.3(4)  |
| O55-Cu4-N61 | 93.3(2)    | 93.3(5)   |
| O68-Cu4-O28 | 74.18(13)  | 74.6(3)   |
| N61-Cu4-O28 | 94.68(18)  | 93.0(5)   |
| N61-Cu4-O68 | 88.81(18)  | 88.9(5)   |
|             | \ - /      | - \- /    |



**Figure S7:** Evolution of the visible-UV spectrum of complex **3a** in MeOH after addition of OAPH up to 1 hour.



**Figure S8:** a) Rate *vs* substrate concentration plot for the oxidation of 2aminophenol in MeOH catalyzed by **3a** at 25 °C. b) Lineweaver-Burk plot for the oxidation of 2-aminophenol catalyzed by complex **3a**.



**Figure S9:** Evolution of the visible-UV spectrum of complex **3b** in MeOH after addition of OAPH up to 4.5 hour.



**Figure S10:** a) Rate *vs* substrate concentration plot for the oxidation of 2-aminophenol in MeOH catalyzed by **3b** at 25 °C. b) Lineweaver-Burk plot for the oxidation of 2-aminophenol catalyzed by complex **3b**.



**Figure S11:** Temperature dependence of  $\chi$  (o experimental data, — best fit) and  $\chi$ T (o experimental data, — best fit) for complex **3a**:  $J_1 = -36.4 \text{ cm}^{-1}$ ,  $J'_1 = -8.0 \text{ cm}^{-1}$ ,  $J_2 = +6.7 \text{ cm}^{-1}$ , g = 2.23, TIP = 60x 10<sup>-6</sup> per Cu,  $\rho = 0.23$  with  $R_{\chi T} = 9.0x 10^{-5}$  and  $R_{\chi} = 6.7x 10^{-3}$ .

# Equations obtained for the determination of magnetic coupling constants in **3a-model** and **3b-model**

Sub-indices in E (calculated energy in  $cm^{-1}$ ) make reference to the spin multiplicity of the considered calculated state:

#### For 3a-model

 $E_{3a-5} = J_1 + J_4 + J_6 = -25.240$   $E_{3b-5} = J_1 + J_2 + J_5 = -22.189$   $E_{3c-5} = J_2 + J_3 + J_4 = -16.658$   $E_{3d-5} = J_3 + J_5 + J_6 = -20.433$   $E_{1a-5} = J_2 + J_4 + J_5 + J_6 = -14.485$   $E_{1b-5} = J_1 + J_2 + J_3 + J_6 = -52.213$   $E_{1c-5} = J_1 + J_3 + J_4 + J_5 = -12.269$ 

#### For 3b-model

 $E_{3a-5} = J_1 + J_4 + J_6 = -15.144$   $E_{3b-5} = J_1 + J_2 + J_5 = -19.182$   $E_{3c-5} = J_2 + J_3 + J_4 = -4.016$   $E_{3d-5} = J_3 + J_5 + J_6 = +0.132$   $E_{1a-5} = J_2 + J_4 + J_5 + J_6 = +3.182$   $E_{1b-5} = J_1 + J_2 + J_3 + J_6 = -28.159$   $E_{1c-5} = J_1 + J_3 + J_4 + J_5 = -8.252$ 

# Table S3. Cartesian coordinates (Å) of the calculated model compounds

### 3a-model

| Сυ | 6.224800742  | 9.310421295  | 2.785599963 |
|----|--------------|--------------|-------------|
| Cu | 8.429132742  | 11.506502295 | 2.058114963 |
| Cu | 6.340091742  | 12.139757295 | 4.369212963 |
| Cu | 8.547669742  | 9.929260295  | 4.898857963 |
| 0  | 6.481952742  | 11.154019295 | 2.213222963 |
| 0  | 4.388744742  | 9.240717295  | 2.264974963 |
| 0  | 8.274500742  | 12.079102295 | 3.912167963 |
| 0  | 10.231282742 | 12.066954295 | 1.871659963 |
| 0  | 8.182466742  | 9.343708295  | 3.070827963 |
| 0  | 10.372649742 | 9.372033295  | 4.858490963 |
| 0  | 6.601479742  | 10.301260295 | 4.941293963 |
| 0  | 4.543594742  | 12.204957295 | 5.043319963 |
| Ν  | 8.393714742  | 10.856144295 | 0.200807963 |
| Ν  | 6.269334742  | 14.007646295 | 3.764304963 |
| Ν  | 6.183770742  | 7.458332295  | 3.493715963 |
| Ν  | 8.677210742  | 10.614475295 | 6.742264963 |
| С  | 9.055292669  | 13.248893066 | 4.221285282 |
| Η  | 8.902654840  | 13.567844601 | 5.258628072 |
| Η  | 10.126640541 | 13.060151662 | 4.088251594 |
| Η  | 8.785647692  | 14.091120839 | 3.573942531 |
| С  | 11.599661614 | 12.492507482 | 1.730084021 |
| Η  | 12.086496506 | 12.601917913 | 2.705855306 |
| Η  | 12.184050223 | 11.770218016 | 1.148796292 |
| Η  | 11.665959772 | 13.459146289 | 1.217909596 |
| С  | 11.749573478 | 8.951612752  | 4.828034585 |
| Η  | 12.151086695 | 8.826596457  | 5.840095115 |
| Η  | 11.862946711 | 7.993942998  | 4.307340149 |
| Η  | 12.379312548 | 9.684807663  | 4.311350351 |
| С  | 8.890161510  | 8.146602578  | 2.697055283 |
| Η  | 9.556397475  | 7.809937496  | 3.499485789 |

| Η | 8.197807969 | 7.326076511  | 2.476848355  |
|---|-------------|--------------|--------------|
| Н | 9.504580586 | 8.308650275  | 1.804117203  |
| С | 3.004286382 | 9.188157740  | 1.872403258  |
| Η | 2.899415403 | 9.164692569  | 0.781733777  |
| Н | 2.510213090 | 8.294688670  | 2.270790187  |
| Н | 2.452341920 | 10.061400662 | 2.238344213  |
| С | 5.680475431 | 11.513536527 | 1.072178931  |
| Η | 6.292348001 | 11.604532817 | 0.167502145  |
| Η | 4.908247187 | 10.761518177 | 0.874089346  |
| Η | 5.174569840 | 12.473423233 | 1.226405113  |
| С | 3.196162185 | 12.253859465 | 5.548922654  |
| Η | 2.463924124 | 12.258508259 | 4.733499902  |
| Η | 2.976831395 | 11.388426413 | 6.184553978  |
| Η | 3.027621610 | 13.155296691 | 6.149017375  |
| С | 5.909976830 | 9.954847914  | 6.155963541  |
| Η | 4.832399696 | 9.850212575  | 5.985706621  |
| Η | 6.273252884 | 9.005194806  | 6.564983133  |
| Η | 6.049437184 | 10.721167606 | 6.926945779  |
| Η | 5.337740291 | 14.370523783 | 3.785558379  |
| Η | 6.829368179 | 14.605783529 | 4.337536503  |
| Η | 6.600731761 | 14.107667207 | 2.826130228  |
| Η | 7.691781564 | 10.157011672 | 0.064780793  |
| Η | 8.202167262 | 11.592833802 | -0.447727413 |
| Η | 9.267089728 | 10.449869581 | -0.067812568 |
| Η | 6.948188384 | 7.279904025  | 4.113255324  |
| Η | 6.235853301 | 6.778944906  | 2.761786879  |
| Η | 5.344147028 | 7.273901946  | 4.004614647  |
| Η | 9.599408933 | 10.937279876 | 6.955214954  |
| Η | 8.055397790 | 11.381910817 | 6.898442335  |
| Η | 8.450169355 | 9.912209149  | 7.417005260  |
|   |             |              |              |

## 3b-model:

| Cu | 8.507593000  | 9.972998000  | -4.920554000 |
|----|--------------|--------------|--------------|
| Cu | 6.193325000  | 9.326345000  | -2.802214000 |
| Cu | 8.399428000  | 11.514177000 | -2.051916000 |
| Cu | 6.317969000  | 12.192642000 | -4.344435000 |
| 0  | 6.460961000  | 11.177087000 | -2.197902000 |
| 0  | 4.359303000  | 9.273885000  | -2.277611000 |
| 0  | 8.254365000  | 12.137141000 | -3.911645000 |
| 0  | 10.195994000 | 12.098193000 | -1.852496000 |
| 0  | 8.132597000  | 9.361360000  | -3.101270000 |
| 0  | 10.323081000 | 9.372548000  | -4.922768000 |
| 0  | 6.578961000  | 10.335143000 | -4.944910000 |
| 0  | 4.513302000  | 12.267089000 | -5.009858000 |
| Ν  | 8.385456000  | 10.809811000 | -0.190416000 |
| Ν  | 6.256383000  | 14.098916000 | -3.693183000 |
| Ν  | 6.171366000  | 7.458130000  | -3.517528000 |
| Ν  | 8.633296000  | 10.731189000 | -6.760504000 |
| С  | 5.886257493  | 9.995410604  | -6.160781601 |
| Η  | 6.401554006  | 9.194527096  | -6.703150078 |
| Η  | 4.865872771  | 9.651894061  | -5.956040432 |
| Η  | 5.815507582  | 10.857394633 | -6.833898719 |
| С  | 9.037325006  | 13.307273912 | -4.213907466 |
| Η  | 10.052225851 | 13.038103107 | -4.527964476 |
| Η  | 8.585368087  | 13.891611367 | -5.023470450 |
| Η  | 9.125249505  | 13.964829047 | -3.341554786 |
| С  | 5.665667284  | 11.525061149 | -1.048979941 |
| Η  | 4.650268314  | 11.817080879 | -1.340180666 |
| Η  | 5.580089339  | 10.682796646 | -0.353009780 |
| Η  | 6.105523466  | 12.364574881 | -0.498660121 |
| С  | 8.830876620  | 8.151237619  | -2.752544612 |
| Н  | 8.306764470  | 7.601706765  | -1.962335305 |

| Н | 8.923326077  | 7.481252998  | -3.614914167 |
|---|--------------|--------------|--------------|
| Н | 9.843013867  | 8.364788945  | -2.390491170 |
| С | 11.690244970 | 8.920375578  | -4.924435266 |
| Н | 12.067530176 | 8.786623371  | -3.904202609 |
| Н | 11.792282976 | 7.960073397  | -5.442620087 |
| Н | 12.347434088 | 9.638543750  | -5.427869086 |
| С | 3.163231370  | 12.322782770 | -5.507660669 |
| Н | 3.141920978  | 12.329315023 | -6.603384927 |
| Н | 2.577990046  | 11.459382398 | -5.171297866 |
| Н | 2.647480657  | 13.225949654 | -5.162118410 |
| С | 11.557886317 | 12.540908104 | -1.701325063 |
| Н | 11.825378671 | 12.655107621 | -0.644672440 |
| Н | 12.261157972 | 11.826688502 | -2.144503225 |
| Н | 11.719251738 | 13.508954517 | -2.189132417 |
| С | 2.975350806  | 9.234298707  | -1.881745807 |
| Н | 2.311396081  | 9.214425822  | -2.753455417 |
| Н | 2.757578716  | 8.344170845  | -1.280617493 |
| Н | 2.706609670  | 10.111392698 | -1.282085067 |
| Н | 9.293839780  | 10.509501718 | 0.100536304  |
| Н | 8.081456937  | 11.500023018 | 0.466236069  |
| Н | 7.773303995  | 10.024943138 | -0.094226798 |
| Н | 6.560432980  | 14.742128052 | -4.395914717 |
| Н | 5.331665134  | 14.371623332 | -3.427612710 |
| Н | 6.842927861  | 14.238627157 | -2.895407394 |
| Н | 5.267574331  | 7.201517322  | -3.860034280 |
| Н | 6.419564886  | 6.788732282  | -2.817310885 |
| Н | 9.559143319  | 11.044949867 | -6.971124182 |
| Н | 8.386926342  | 10.058128087 | -7.457849681 |
| Н | 8.024193142  | 11.514864223 | -6.882351665 |
| Н | 6.814689483  | 7.341931223  | -4.274253010 |