Supporting Information

Pb₂Bi₂GaB₃O₁₁, A New Congruent-Melting Galloborate Containing Two Types of Asymmetric Cations with a Moderate Birefringence

Lili Liu,^{a,b} Yun Yang,^{a*} Linping Li,^a Zhihua Yang^a and Shilie Pan^{a*}

- Key Laboratory of Functional Materials and Devices for Special Environments of CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China.
 - b. University of Chinese Academy of Sciences, Beijing 100049, China.

Table S1 Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters $(Å^2 \times 10^3)$ for Pb₂Bi₂GaB₃O₁₁. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	Y	Ζ	U(eq)
Bi(1)	4338(1)	2993(1)	-68(1)	13(1)
Pb(1)	1576(1)	5926(1)	599(1)	17(1)
Ga(1)	2500	2500	0	9(1)
B(1)	0	5170(20)	2500	5(4)
B(2)	3249(9)	5078(19)	2390(30)	8(3)
O(1)	644(7)	4390(13)	1941(18)	18(3)
O(2)	1798(7)	1524(12)	1876(17)	13(2)
O(3)	2587(7)	4369(13)	1777(18)	15(2)
O(4)	3966(7)	4466(13)	2323(19)	21(3)
O(5)	5000	1710(20)	2500	30(5)
O(6)	3419(6)	1552(12)	995(16)	9(2)

Bi(1)-O(6)	2.167(10)	O(2)#1-Bi(1)-O(1)#1	84.2(4)
Bi(1)-O(4)	2.181(13)	O(5)-Bi(1)-O(1)#1	87.8(5)
Bi(1)-O(2)#1	2.354(12)	O(1)-Pb(1)-O(3)	92.3(4)
Bi(1)-O(5)	2.370(9)	O(1)-Pb(1)-O(6)#2	75.8(4)
Bi(1)-O(1)#1	2.466(12)	O(3)-Pb(1)-O(6)#2	79.0(4)
Pb(1)-O(1)	2.302(12)	O(1)-Pb(1)-O(6)#1	69.3(4)
Pb(1)-O(3)	2.367(12)	O(3)-Pb(1)-O(6)#1	67.7(4)
Pb(1)-O(6)#2	2.375(11)	O(6)#2-Pb(1)-O(6)#1	129.7(3)
Pb(1)-O(6)#1	2.449(10)	O(6)-Ga(1)-O(6)#1	180.0(3)
Ga(1)-O(6)	1.920(11)	O(6)-Ga(1)-O(2)	95.4(5)
Ga(1)-O(6)#1	1.920(11)	O(6)#1-Ga(1)-O(2)	84.6(5)
Ga(1)-O(2)	1.964(11)	O(6)-Ga(1)-O(2)#1	84.6(5)
Ga(1)-O(2)#1	1.964(11)	O(6)#1-Ga(1)-O(2)#1	95.4(5)
Ga(1)-O(3)#1	2.054(12)	O(2)-Ga(1)-O(2)#1	180.0(8)
Ga(1)-O(3)	2.054(12)	O(6)-Ga(1)-O(3)#1	84.9(5)
B(1)-O(1)#3	1.368(16)	O(6)#1-Ga(1)-O(3)#1	95.1(5)
B(1)-O(1)	1.368(16)	O(2)-Ga(1)-O(3)#1	88.9(5)
B(1)-O(5)#4	1.37(3)	O(2)#1-Ga(1)-O(3)#1	91.1(5)
B(2)-O(4)	1.36(2)	O(6)-Ga(1)-O(3)	95.1(5)
B(2)-O(3)	1.370(19)	O(6)#1-Ga(1)-O(3)	84.9(5)
B(2)-O(2)#2	1.379(19)	O(2)-Ga(1)-O(3)	91.1(5)
O(6)-Bi(1)-O(4)	83.5(4)	O(2)#1-Ga(1)-O(3)	88.9(5)
O(6)-Bi(1)-O(2)#1	70.5(4)	O(3)#1-Ga(1)-O(3)	180.0(7)
O(4)-Bi(1)-O(2)#1	91.7(4)	O(1)#3-B(1)-O(1)	119.2(19)
O(6)-Bi(1)-O(5)	80.0(4)	O(1)#3-B(1)-O(5)#4	120.4(9)
O(4)-Bi(1)-O(5)	83.4(4)	O(1)-B(1)-O(5)#4	120.4(9)
O(2)#1-Bi(1)-O(5)	150.5(3)	O(4)-B(2)-O(3)	124.9(14)
O(6)-Bi(1)-O(1)#1	71.1(4)	O(4)-B(2)-O(2)#2	116.1(13)
O(4)-Bi(1)-O(1)#1	154.2(4)	O(3)-B(2)-O(2)#2	119.0(13)

Table S2 Bond lengths [Å] and angles [deg] for $Pb_2Bi_2GaB_3O_{11}$.

Symmetry transformations used to generate equivalent atoms:

	-x+1/2,-y+1/2,-		-x+1/2,y+1/2,-	
#1	Z	#2	z+1/2	
#3	-x,y,-z+1/2	#4	x-1/2,y+1/2,z	
#5	-x+1/2,y-1/2,- z+1/2	#6	x+1/2 v-1/2 z	
#7	-x+1,y,-z+1/2			

	The second secon		9 - 0-
Groups	BO ₃	PbO ₅	BiO ₆
$\Delta \alpha$ (a.u.)	8.6	48.3	44.7

Table S3 The calculated anisotropic polarizability of BO₃, PbO₅, BiO₆.

Figure S1 The unit cell and asymmetric unit of $Pb_2Bi_2GaB_3O_{11}$.

Figure S2 The coordination environments of cations in Pb₂Bi₂GaB₃O₁₁.

Figure S3 The BO₃ groups in $Pb_2Bi_2GaB_3O_{11}$.

Figure S5 TG-DSC curves of Pb₂Bi₂GaB₃O₁₁.

