Supporting Information for

"Selective Adsorption of Chlorinated Volatile Organic Compounds Vapors by Microcrystalline 1D Coordination Polymers"

Massimo Cametti^{a*} and Javier Martí-Rujas^{b*}

^a Dipartimento di Chimica Materiali e Ingegneria Chimica. "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milan, Italy.

^b Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy.

Content

Experimental

Solid liquid interface reactions.

Figure S1. Solid-liquid interface synthesis of 1-3^{Pwd}.

Figure S2. Several pictures taken during the small-scale synthesis of 1^{Pwd} coordination polymer using the solid-liquid interface reaction method. Where X in ZnX_2 is Cl, Br or I. In this case X = Cl.

Figure S3. Experimental XRPD obtained after adding a MeOH solution of ZnX_2 (where X = Cl, Br and I) into a suspension of L in MeCN.

Figure S4. Experimental XRPD corresponding to L.

Figure S5. Experimental XRPD corresponding to **1**•**TCM** obtained by fast precipitation (*i.e.*, instant synthesis) and measured at 300 K.

Figure S6. SCSC guest exchange process where the original TCM guest molecules are replaced by MeCN.

Figure S7. (Top) Single crystal preparation of **1-3**•**TCM**^{SC}. (Bottom) Summary explaining the two methods (i.e., slow crystallization (layering) and fast crystallization (solid liquid interface reaction) carried out in this work. Inset showing the SC-to-SC guest exchange reactions done.

Table S1. Crystallographic data regarding the lattice parameters of 2. TCM^{SC}.

Figure S8. Single crystal data of 2.TCM^{SC} measured at 100K.

Figure S9. Simulated XRDP obtained from the single crystal 2.TCM^{SC}.

Table S2. Crystallographic data regarding the lattice parameters of 3. TCM^{SC}.

Figure S10. Single crystal data of 3. TCM^{SC} viewed along the *a*-axis.

Figure S11. Simulated XRPD of 3.TCM^{SC}.

Figure S12. Crystal packing of **1-3**•**TCM**^{SC} showing the hydrogen bonding interactions between TCM and the iminic N atoms as dashed black lines.

Figure S13. Crystal structure of $1 \cdot MeCN^{SC}$ obtained after SC-to-SC according to Figure S6. Inset: view of the MeCN guest molecule with the displacement ellipsoids showing that the vibration is along the channel direction.

Figure S14. Experimental SLI of $ZnCl_2$ in MeCN. Simulated after guest exchange of $1 \cdot TCM^{SC}$ for MeCN to give $1 \cdot MeCN^{SC}$.

Figure S15. Crystal structure of 2·MeCN^{SC} obtained after SCSC according to Figure S6.

Figure S16. Experimental SLI of $ZnBr_2$ in MeCN. Simulated after guest exchange of **2**·**TCM**^{SC} for MeCN to give **2**·**MeCN**^{SC}.

Figure S17. Crystal structure of 3·MeCN^{SC} obtained after SCSC according to Figure S6.

Figure S18. (Top) Experimental XRPD pattern obtained using the solid liquid interface method by adding ZnI_2 in MeOH to a suspension of L in MeCN vigorously stirred. (Bottom) Simulated XRPD pattern obtained after a SC-to-SC guest exchange of $3 \cdot TCM^{SC}$ for MeCN to give $3 \cdot MeCN^{SC}$. The good match between both XRPD patterns confirms that MeCN replaced the original TCM guest molecule.

Figure S19. Experimental XRPD diffraction patterns measured at room temperature of $3 \cdot MeCN^{Pwd}$ (a) exposed to DCE to give $3 \cdot DCE^{Pwd}$ (b), TCE to give $3 \cdot TCE^{Pwd}$ (c), TCM to give $3 \cdot TCM^{Pwd}$ (d) and DCM to give $3 \cdot DCM^{Pwd}$ (e). It is clear that there is an anisotropic peak shift

corroborating the structural adaptation to the different guest molecules and that the structure is maintained after the guest exchange.

Table S3. Crystallographic data regarding the lattice parameters of 1. TCE^{SC}.

Figure S20. Crystal packing of **1**•**TCE**^{SC} showing the inclusion of TCE guest molecules in the 1D channels.

NMR analysis:

Figure S21. ¹H-NMR characterization in DMSO-d₆ of sample 3^{Pwd} exposed to TCM vapors for 24h a) and b) after thermal treatment under reduced pressure (80°C for 10 h).

Figure S22. a) ¹H-NMR characterization in DMSO-d6 of **3**^{Pwd}; b) after exposure for 24h to TCM vapors and c) after thermal treatment under reduced pressure (80°C for 10 h).

Figure S23. ¹H-NMR characterization in DMSO-d₆ of materials $1-3^{Pwd}$, as synthesized, showing the presence of MeCN.

Figure S24. Plot of the *R* factor over time for various solvents in samples of 1^{Pwd} as measured by ¹H-NMR. Samples were exposed to each solvent for 24 h and then left in ambient condition. *R* factors were calculated by using nitromethane as internal standard.

Figure S25. Plot of the ATR-FT-IR spectra in the 2450-2000 cm⁻¹ region of a) 3^{Pwd} as synthesized and of the material exposed to vapours of TCE, DCE, DCM and TCM. The absorption peak at 2248 cm⁻¹ corresponds to included MeCN molecules.

CheckCIF files CCDC 2·TCM^{SC}: 1497288; 3·TCM^{SC}: 1497289; 1·TCE^{SC}: 1497290; 1·MeCN^{SC} 1507642; 2·MeCN^{SC} 1507643; 3·MeCN^{SC} 1507644; 3·MeCN^{SC} (100K) 1507645.

Material and Methods

All the chemicals were purchased from Sigma-Aldrich and used without further purification. Xray powder diffraction measurements were carried out using a D8-Advance Bruker diffractometer using the reflection mode at room temperature and Bruker D2-Phaser diffractometer also using reflection mode. Single crystal X-ray diffraction experiments were carried out using a Bruker X8 Prospector APEX-II/CCD diffractometer equipped with a microfocusing mirror (Cu-K α radiation, $\lambda = 1.54178$ Å). The low and high temperature experiments were carried out using the Oxford Cryosystems 700 Series Cryostream Cooler device. Single crystals of **1-3·TCM^{SC}** glued in a glass fiber were introduced in a sealed jar containing vapours of MeCN for single-crystal-to-single-crystal experiments overnight.

Solid liquid interface reactions: Microcrystalline solids of $1-3^{Pwd}$ were obtained by preparing a suspension of L in MeCN and left stirring vigorously for 5 minutes. Then a methanol solution of ZnX₂ (where X = Cl, Br, and I) was added in the suspension and left stirring for 5 minutes (Figure S1). Yield is calculated by considering the formula [(Y-ZnX₂)·MeCN] (Y = 1-3).

<u>Preparation of 1^{Pwd} </u>: 100 mg of L (0.2249 mmol) were suspended in 4 mL of MeCN and left stirring vigorously. Then 30.6 mg of ZnCl₂ (1 eq.) dissolved in 1 mL of MeOH were added to the suspension and left for 5 minutes. From the reaction, 133 mg of white solid was filtered and collected.

<u>Preparation of 2^{Pwd} </u>: 100 mg of L (0.2249 mmol) were suspended in 4 mL of MeCN and left stirring vigorously. Then 50.6 mg of ZnBr₂ (1 eq.) dissolved in 1 mL of MeOH were added to the suspension and left for 5 minutes. From the reaction, 150 mg of white solid was filtered and collected.

<u>Preparation of 3^{Pwd} </u>: 100 mg of L (0.2249 mmol) were suspended in 4 mL of MeCN and left stirring vigorously. Then 71.8 mg of ZnI₂ (1 eq.) dissolved in 1 mL of MeOH were added to the suspension and left for 5 minutes. From the reaction, 174 mg of white solid was filtered and collected.

Figure S1. Solid-liquid interface synthesis of 1-3^{Pwd}.

Figure S2. Several pictures taken during the small-scale synthesis of 1^{Pwd} coordination polymer using the solid-liquid interface reaction method. Where X in ZnX_2 is Cl, Br or I. In this case X = Cl.

Figure S3. Experimental XRPD obtained after adding a MeOH solution of ZnX_2 (where X = Cl, Br and I) into a suspension of L in MeCN.

Figure S4. Experimental XRPD corresponding to L.

Figure S5. Experimental XRPD corresponding to **1**•**TCM** obtained by fast precipitation (*i.e.*, instant synthesis) and measured at 300 K. See *Chem. Commun.*, 2015, **51**, 12357.

Since the solid liquid interface intrinsically gives microcrystalline materials (*i.e.*, the starting materials are powders already) single crystal X-ray diffraction cannot be carried out. However, one way to know if the product obtained is an isostructural coordination polymer to **1-3**·**TCM**^{SC}, we set up gas solid reactions in order to include MeCN in single crystals of **1-3**·**TCM**^{SC} following a SC-to-SC guest exchange process where the original TCM guest molecules are replaced by MeCN as shown in Figure S6).

Figure S6. SC-to-SC guest exchange process where the original TCM guest molecules are replaced by MeCN.

In order to perform the experiments shown in Figure S6, single crystals of the bromide and iodide which are isostructural to **1**·**T**CM^{SC} were set up for crystallization following the triple layer method described in *Chem. Commun.*, 2015, **51**, 12357.

Figure S7. (Top) Single crystal preparation of **1-3·TCM^{SC}**. (Bottom) Summary explaining the two methods (i.e., slow crystallization (layering) and fast crystallization (solid liquid interface reaction) carried out in this work. Inset showing the SC-to-SC guest exchange reactions done.

Synthesis of crystals 2.TCM with ligand L.

Single crystals of **2**•**TCM**^{SC} were prepared out using the triple layering method by treating L (40 mg) with ZnBr₂ (20.27 mg) following the procedure used to crystallize **1**•**TCM**^{SC}. The bottom layer was a chloroform solution of L onto which a layer of nitrobenzene (middle layer) was deposited dropwise. The upper layer consists on a methanol solution of ZnBr₂. Prism-like single crystals were obtained after one week. The crystal structure of **2**•**TCM**^{SC} has been solved using single crystal X-ray diffraction. The coordination polymer crystallizes in the orthorhombic system in the *Pnna* space group and have similar lattice parameters (Table S1), and therefore are isostructural to the chloride polymer **1**•**TCM**^{SC}. The crystal structure of **2**•**TCM**^{SC} is shown in Figure S8.

Crystal data for	2·TCM ^{SC}
Empirical formula	$C_{30.75} H_{28.75} N_4 Br_2 Cl_2 Zn_1$
Formula weight	750.42 g/mol
Temperature	100 K
Crystal system	Orthorhombic
Space group	Pnna
Unit cell dimensions	$a = 14.6557(10)$ Å $\alpha = 90.00^{\circ}$
	$b = 22.6968(16)$ Å $\beta = 90.00^{\circ}$
	$c = 10.1625(8)$ Å $\gamma = 90.00^{\circ}$
Volume	3380.4(4)Å ³
Ζ	4
R-Factor (%)	6.19
Density (calculated)	1.474 g/cm ³

Table S1. Crystallographic data regarding the lattice parameters of 2. TCM^{SC}.

The CCDC number for **2·TCM^{SC}: 1497288**.

Figure S8. Single crystal data of 2. TCM^{SC} measured at 100K.

Figure S9. Simulated XRDP obtained from the single crystal 2.TCM^{SC}.

Synthesis of crystals 3.TCM^{SC} with ligand L.

Single crystals of **3**•**TCM**^{SC} were prepared out using the triple layering method by treating L (40 mg) with ZnI₂ (26.56 mg) following the procedure used to crystallize **1**•**TCM**^{SC}. The bottom layer was a chloroform solution of L onto which a layer of nitrobenzene (middle layer) was deposited dropwise. The upper layer was a methanol solution of ZnI₂. Prism-like single crystals were obtained after one week. The crystal structure of **3**•**TCM**^{SC} has been solved using single crystal X-ray diffraction. The coordination polymer crystallizes in the orthorhombic system in the *Pnna* space group and have similar lattice parameters (Table S2), and therefore are isostructural to the chloride polymers **1**•**TCM**^{SC} and **2**•**TCM**^{SC}. The crystal structure of **3**•**TCM**^{SC} is shown in Figure S10.

Crystal data for	3·TCM ^{SC}
Empirical formula	$C_{30.76} H_{28.76} N_4 I_2 C l_{2.5} Z n_1$
Formula weight	862.12 g/mol
Temperature	100 K
Crystal system	Orthorhombic
Space group	Pnna
Unit cell dimensions	$a = 14.4863(13)$ Å $\alpha = 90.00^{\circ}$
	$b = 22.1482(19)$ Å $\beta = 90^{\circ}$
	$c = 11.0890(11)$ Å $\gamma = 90.00$ °
Volume	3557.9(6) Å ³
Ζ	4
R- Factor (%)	5.58
Density (calculated)	1.609 g/cm ³

Table S2. Crystallographic data regarding the lattice parameters of 3. TCM^{SC}.

The CCDC number for **3**·**T**CM^{SC}: **1497289**.

Figure S10. Single crystal data of 3.TCM^{SC} viewed along the *a*-axis.

Figure S11. Simulated XRPD of 3·TCM^{SC}.

Figure S12. Crystal packing of **1-3**·**TCM**^{SC} showing the hydrogen bonding interactions between TCM and the iminic N atoms as dashed black lines.

Single crystal structure of 1·MeCN^{SC}.

Single crystal structure of **1·MeCN^{SC}** after the guest exchange reaction in **1·TCM^{SC}**, where TCM is replaced by MeCN to give **1·TCM^{SC}**, the lattice parameters are: a = 14.7485(14) Å; b = 22.317(2) Å; c = 10.4570(11) Å, $a = \beta = \gamma = 90.00^{\circ}$ V = 3441.8 (6) Å³. The Bravais lattice remains Orthorhombic and the space group is maintained to *Pnna*. The data collection was carried out at 300 K. For further crystallographic information see the attached checkCIF files at the end of document and the CIF files. The CCDC number for **1·MeCN^{SC}**: **1507642**.

Figure S13. Crystal structure of **1**•**MeCN^{SC}** obtained after SC-to-SC according to Figure S6. Inset: view of the MeCN guest molecule with the displacement ellipsoids showing that the vibration is along the channel direction.

Figure S14. Experimental SLI of $ZnCl_2$ in MeCN. Simulated after guest exchange of $1 \cdot TCM^{SC}$ for MeCN to give $1 \cdot MeCN^{SC}$.

Single crystal structure of 2·MeCN^{SC}.

Single crystal structure of **2**·MeCN^{SC} after the guest exchange reaction in **2**·TCM^{SC}, where TCM is replaced by MeCN to give **2**·TCM^{SC}, the lattice parameters are: a = 14.8955(11) Å; b = 22.5127(17) Å; c = 10.2599(7) Å, $\alpha = \beta = \gamma = 90.00$ ° V = 3440.5 (4) Å³. The Bravais lattice remains Orthorhombic and the space group is maintained to *Pnna*. The data collection was carried out at 300 K. For further crystallographic information see the attached checkCIF files at the end of document and the CIF files. The CCDC number for **2**·MeCN^{SC}: **1507643**

Figure S15. Crystal structure of 2·MeCN^{SC} obtained after SC-to-SC according to Figure S6.

Figure S16. Experimental SLI of $ZnBr_2$ in MeCN. Simulated after guest exchange of $2 \cdot TCM^{SC}$ for MeCN to give $2 \cdot MeCN^{SC}$.

Single crystal structure of 3·MeCN^{SC}.

Single crystal structure of **3·MeCN^{SC}** after the guest exchange reaction in **3·TCM^{SC}**, where TCM is replaced by MeCN to give **3·TCM^{SC}**, the lattice parameters are: a = 15.077(3) Å; b = 22.570(4) Å; c = 10.412(2) Å, $a = \beta = \gamma = 90.00$ ° V = 3543.2(11) Å³. The Bravais lattice remains Orthorhombic and the space group is maintained to *Pnna*. The data collection was carried out at 300 K. . For further crystallographic information see the attached checkCIF files at the end of document and the CIF files. The CCDC number for **3·MeCN^{SC}**: **1507644**

Figure S17. Crystal structure of **3**·MeCN^{SC} obtained after SC-to-SC according to Figure S6.

Figure S18. (Top) Experimental XRPD pattern obtained using the solid liquid interface method by adding ZnI_2 in MeOH to a suspension of L in MeCN vigorously stirred. (Bottom) Simulated XRPD pattern obtained after a SC-to-SC guest exchange of $3 \cdot TCM^{SC}$ for MeCN to give $3 \cdot MeCN^{SC}$. The good match between both XRPD patterns confirms that MeCN replaced the original TCM guest molecule.

Gas solid experiments using microcrystalline sample of 3·MeCN^{Pwd} obtained by the solid liquid interface method.

Figure S19. Experimental XRPD diffraction patterns measured at room temperature of $3 \cdot MeCN^{Pwd}$ (a) exposed to DCE to give $3 \cdot DCE^{Pwd}$ (b), TCE to give $3 \cdot TCE^{Pwd}$ (c), TCM to give $3 \cdot TCM^{Pwd}$ (d) and DCM to give $3 \cdot DCM^{Pwd}$ (e). It is clear that there is an anisotropic peak shift corroborating the structural adaptation to the different guest molecules and that the structure is maintained after the guest exchange.

Single-crystal-to-single-crystal reaction to include TCE in single crystals of 1·TCM^{sc}.

The crystal structure corresponding to the SCSC guest exchange reaction by exposing a single crystal of $1 \cdot TCM^{SC}$ to vapors of 1,1,2-trichloroethylene (TCE) to give the $1 \cdot TCE^{SC}$ coordination polymer.

Crystal data for	1·TCE ^{SC}
Empirical formula	$C_{32} H_{29} N_4 C l_5 Z n_1$
Formula weight	712.22 g/mol
Temperature	200 K
Crystal system	Orthorhombic
Space group	Pnna
Unit cell dimensions	$a = 14.7372(11) \text{ Å}$ $\alpha = 90.00^{\circ}$
	$b = 22.7121(16) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 9.9658(8) \text{ Å}$ $\gamma = 90.00^{\circ}$
Volume	3335.7(4)Å ³
Ζ	4
R-Factor (%)	8.39
Density (calculated)	1.418 g/cm3

Table S3.	Crystallographi	c data regarding the latti	ce parameters of 1.TCE ^{SC} .
-----------	-----------------	----------------------------	--

The CCDC number for 1.TCE^{SC}: 1497290.

Figure S20. Crystal packing of **1**•**TCE**^{SC} showing the inclusion of TCE guest molecules in the 1D channels.

NMR analysis

A certain weighted amount of the powder samples (ca. 3-5 mg) is introduced into a NMR tube. 500 µL of DMSO-d6 and 5µL of a 4.6mM solution of nitromethane in DMSO-d₆ are added. The sample is then heated till complete dissolution to ensure complete solvent release from the coordination polymer. Spectra were recorded at 305 K on a Bruker Avance 400 (400 MHz, SW= 14 ppm, NS = 16). In order to check the effect of heating on the resulting amount of volatile solvents detected, a control experiment was also performed avoiding the heating step. No significant difference was spotted, thus indicating that DMSO molecules can disrupt the CP structure and release all the solvent guest molecules at r.t.

Equation for the determination of the R factor by ¹H-NMR analysis. R is defined as the molar ratio between the solvent guest molecules and L-ZnX₂ units (X = Cl, Br or I).

 $R_{solvent guest} = \frac{moles \ of \ solvent \ guest}{moles \ of \ L \cdot ZnX_2 \ units} =$

 $= \frac{Volume \cdot [solvent guest]_{NMR}}{(mg_{tot} - MW_{solvent guest} \cdot Volume \cdot [solvent guest]_{NMR})/MF_{L \cdot ZnX_2}}$

Volume =; volume of the DMSO-d6 used (500 μ L + 5 μ L of internal standard) $[solvent guest]_{NMR} = concentration of the guest solvent as measured by 1H-NMR by comparison of$ the integral value of an internal standard (Nitromethane) $mg_{tot} = total amount of material weighted$ $MW_{solvent guest} = molecular$ weight of the solvent guest $MF_{L-ZnX2 \text{ units}} =$ formula weight of the L-ZnX₂ unit

Equation for the determination of the S factor. S is defined as the ration between the R factors of two given solvents.

 $S_{solvent1/solvent2} = \frac{R_{solvent1}}{R_{solvent2}}$

Figure S21. ¹H-NMR characterization in DMSO-d₆ of sample 3^{Pwd} exposed to TCM vapors for 24h a) and b) after thermal treatment under reduced pressure (80°C for 10 h).

Figure S22. a) ¹H-NMR characterization in DMSO-d6 of 3^{Pwd} ; b) after exposure for 24h to TCM vapors and c) after thermal treatment under reduced pressure (80°C for 10 h).

Figure S23. ¹H-NMR characterization in DMSO-d₆ of materials $1-3^{Pwd}$, as synthesized, showing the presence of MeCN.

Figure S24. Plot of the *R* factor over time for various solvents in samples of 1^{Pwd} as measured by ¹H-NMR. Samples were exposed to each solvent for 24 h and then left in ambient condition. *R* factors were calculated by using nitromethane as internal standard.

Figure S25. Plot of the ATR-FT-IR spectra in the 2450-2000 cm⁻¹ region of a) 3^{Pwd} as synthesized and of the material exposed to vapours of TCE, DCE, DCM and TCM. The absorption peak at 2248 cm⁻¹ corresponds to included MeCN molecules.

checkCIF (basic structural check) running

Checking for embedded fcf data in CIF ... Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait ...

Structure factors have been supplied for datablock(s) 2TCM_100K

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. Please wait while processing Structure factor report <u>CIF dictionary</u> <u>Interpreting this report</u>

Datablock: 2TCM_100K

Bond precisi	recision: C-C = 0.0098 A		Wavelength=1.54178						
Cell:	a=14.6	557(10)	b=22.6968(16)	c=10.16	25(8)				
	alpha=	90	beta=90	gamma=9	0				
Temperature:	100 K								
		Calculat	ed		Reported				
Volume		3380.4(4)		3380.4(4)				
Space group		Pnna			Pnna				
Hall group		-P 2a 2b	рС		-P 2a 2bc				
Moiety formu	la	C30 H28 C13)	Br2 N4 Zn, 0.68	В(С Н	?				
Sum formula		C30.68 H	28.68 Br2 Cl2.0	04 N4 Zn	С30.75 Н28.75	Br2	C12	N4	Zn
Mr		750.92			750.42				
Dx,g cm-3		1.475			1.474				

Ζ	4	4
Mu (mm-1)	5.454	5.425
F000	1501.8	1501.0
F000'	1495.68	
h,k,lmax	17,26,12	17,26,12
Nref	2938	2841
Tmin,Tmax	0.624,0.722	0.623,0.753
Tmin'	0.554	
Correction method= Tmax=0.753 AbsCorr	<pre># Reported T Limits: Tmin=0.623 = MULTI-SCAN</pre>	3
Data completeness=	0.967 Theta(max) = 65.954	
R(reflections) = 0.0	0619(2205) wR2(reflections)= 0.1980(2841)
S = 1.091	Npar= 204	

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level B

<u>PLAT934_ALERT_3_B</u> Number of (Iobs-Icalc)/SigmaW > 10 Outliers 2 Check	PLAT934	ALERT 3	<u>B</u> Number of	(Iobs-Icalc)/SigmaW	>	10 Outliers	2 Check
--	---------	---------	--------------------	---------------------	---	-------------	---------

Alert level C

PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ	Please Check
<u>PLAT077_ALERT_4_C</u> Unitcell contains non-integer number of atoms	Please Check
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor	2.1 Note
PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds 0.0	0975 Ang.
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.592	2 97 Report
<u>PLAT918_ALERT_3_C</u> Reflection(s) with I(obs) much Smaller I(calc) .	1 Check
PLAT971_ALERT_2_C Check Calcd Residual Density 0.92A From Cl1S	1.57 eA-3
PLAT978_ALERT_2_C Number C-C Bonds with Positive Residual Density	0 Note

Alert level G

FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the __chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C30.75 H28.75 Br2 Cl2 N4 Zn1 Atom count from the _atom_site data: C30.68 H28.68 Br2 Cl2.04 N4 Zn
 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected.
 CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z_4
 From the CIF: _chemical_formula_sum_C30.75 H28.75 Br2 Cl2 N4 Zn
 TEST: Compare cell contents of formula and atom_site data

atom Z*formula cif sites diff
C 123.00 122.72 0.28
H 115.00 114.72 0.28
Br 8.00 8.00 0.00
Cl 8.00 8.16 -0.16
N 16.00 16.00 0.00
Zn 4.00 4.00 0.00
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 4 Note
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms 4 Report
PLAT004 ALERT 5 G Polymeric Structure Found with Maximum Dimension 1 Info
PLAT068 ALERT 1 G Reported F000 Differs from Calcd (or Missing) Please Check
PLAT072 ALERT 2 G SHELXL First Parameter in WGHT Unusually Large 0.13 Report
PLAT176 ALERT 4 G The CIF-Embedded .res File Contains SADI Records 1 Report
PLAT187 ALERT 4 G The CIF-Embedded .res File Contains RIGU Records 1 Report
PLAT300 ALERT 4 G Atom Site Occupancy of <ci1s 0.34="" at="" check<="" constrained="" is="" td=""></ci1s>
And 4 other PLAT300 Alerts
More
PLAT302 ALERT 4 G Anion/Solvent Disorder Percentage = 100 Note
PLAT789 ALERT 4 G Atoms with Negative atom site disorder group # 5 Check
PLAT860 ALERT 3 G Number of Least-Squares Restraints 21 Note
PLAT909 ALERT 3 G Percentage of Observed Data at Theta(Max) Still 71 %
0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
8 ALERT level C = Check. Ensure it is not caused by an omission or oversight
19 ALERT level \mathbf{G} = General information/check it is not something unexpected
4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
7 ALERT type 2 Indicator that the structure model may be wrong or deficient
6 ALERT type 3 Indicator that the structure quality may be low
10 ALERT type 4 Improvement, methodology, query or suggestion

1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section*

C or *E* or *IUCrData*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 11/08/2016; check.def file version of 04/08/2016

Datablock 2TCM_100K - ellipsoid plot

Download CIF editor (publCIF) from the IUCr Download CIF editor (enCIFer) from the CCDC Test a new CIF entry

checkCIF (basic structural check) running

Checking for embedded fcf data in CIF ... Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait ...

checkCIF/PLATON (basic structural check)

Structure factors have been supplied for datablock(s) 3TCM_100K

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. Please wait while processing Structure factor report <u>CIF dictionary</u> <u>Interpreting this report</u>

Datablock: 3TCM_100K

Bond precisi	on:	C-C = (0.0125 A		Wavelength=1.54178	
Cell:	a=14.48	363(13)	b=22.1482(19)	c=11.08	390(11)	
	alpha=9	90	beta=90	gamma=9	00	
Temperature:	100 K					
		Calculat	ed		Reported	
Volume		3557.9(6)		3557.9(6)	
Space group		Pnna			Pnna	
Hall group		-P 2a 2b	С		-P 2a 2bc	
Moiety formu	la	C30 H28 2(Cl0.10	I2 N4 Zn, 0.8)	(C H Cl3)	'?	
Sum formula		С30.80 Н	28.80 Cl2.60 I	2 N4 Zn	C15.38 H14.38 Cl1.25 I N2 Zn0.50	2
Mr		866.34			431.06	

Dx,g cm-3	1.617	1.609
Ζ	4	8
Mu (mm-1)	16.571	16.500
F000	1687.2	1679.0
F000'	1685.97	
h,k,lmax	17,26,13	17,26,13
Nref	3105	3038
Tmin,Tmax	0.351,0.372	0.458,0.753
Tmin'	0.167	
Correction method= Tmax=0.753 AbsCorr	<pre># Reported T Limits: Tmin=0.458 = MULTI-SCAN</pre>	3
Data completeness=	0.978 Theta(max) = 66.019	
R(reflections) = 0.0	0558(1936) wR2(reflections)= 0.1766(3038)
S = 1.111	Npar= 208	

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

Alert level C

<u>SHFSU01_ALERT_2_C</u> The absolute value of parameter shift to su ratio > 0.05
Absolute value of the parameter shift to su ratio given 0.090
Additional refinement cycles may be required.
PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ Please Check
PLAT043_ALERT_1_C Calculated and Reported Mol. Weight Differ by 4.22 Check
PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing) Please Check
PLAT077_ALERT_4_C Unitcell contains non-integer number of atoms Please Check
PLAT080_ALERT_2_C Maximum Shift/Error 0.09 Why ?
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor 2.6 Note
PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds 0.0125 Ang.
PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 Note
C30 H28 I2 N4 Zn
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.593 66 Report
<u>PLAT978_ALERT_2_C</u> Number C-C Bonds with Positive Residual Density 0 Note

Alert level G

<u>FORMU01_ALERT_2_G</u> There is a discrepancy between the atom counts in the __chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C15.38 H14.38 Cl1.25 I1 N2 Zn0 Atom count from the _atom_site data: C15.4 H14.4 Cl1.3 I1 N2 Zn0.5 <u>CELLZ01_ALERT_1_G</u> Difference between formula and atom_site contents detected. <u>CELLZ01</u> ALERT_1 G ALERT: Large difference may be due to a

symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 8 From the CIF: _chemical_formula_sum C15.38 H14.38 Cl1.25 I N2 Zn0.50 TEST: Compare cell contents of formula and atom_site data

Z*formula cif sites diff atom С 123.04 123.20 -0.16 Н 115.04 115.20 -0.16 Cl 10.00 10.40 -0.40 Ι 8.00 8.00 0.00 Ν 16.00 16.00 0.00 4.00 4.00 0.00 Zn

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 4 Note PLAT004 ALERT 5 G Polymeric Structure Found with Maximum Dimension 1 Info PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor ... 0.50 Check PLAT176_ALERT_4_G The CIF-Embedded .res File Contains SADI Records 1 Report PLAT300_ALERT_4_G Atom Site Occupancy of <Cl1 is Constrained at 0.4 Check And 5 other PLAT300 Alerts More ... PLAT302_ALERT_4_G Anion/Solvent Disorder Percentage = 100 Note PLAT720 ALERT_4_G Number of Unusual/Non-Standard Labels 1 Note PLAT789_ALERT_4_G Atoms with Negative _atom_site_disorder_group # 6 Check

PLAT860ALERT 3GNumber of Least-Squares Restraints3NotePLAT909ALERT 3GPercentage of Observed Data at Theta(Max) Still34 %PLAT910ALERT 3GMissing # of FCF Reflection(s) Below Theta(Min)2NotePLAT933ALERT 2GNumber of OMIT records in Embedded RES5Note

0 ALERT level A = Most likely a serious problem - resolve or explain

0 **ALERT level B** = A potentially serious problem, consider carefully

11 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight

20 **ALERT level G** = General information/check it is not something unexpected

6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

7 ALERT type 2 Indicator that the structure model may be wrong or deficient

5 ALERT type 3 Indicator that the structure quality may be low

12 ALERT type 4 Improvement, methodology, query or suggestion

1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 11/08/2016; check.def file version of 04/08/2016

Datablock 3TCM_100K - ellipsoid plot

checkCIF (basic structural check) running

Checking for embedded fcf data in CIF ... Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait ...

checkCIF/PLATON (basic structural check)

Structure factors have been supplied for datablock(s) 1TCE200K

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. Please wait while processing Structure factor report <u>CIF dictionary</u> <u>Interpreting this report</u>

Datablock: 1TCE200K

Bond precision: 0		C-C = 0.0065 A			Wavelength=1.54178				
Cell:	a=14.7	372(11)	b=22.7	121(16)	c=9.965	8(8)			
	alpha=	90	beta=90	0	gamma=9	0			
Temperature:	200 K								
		Calculat	ed			Reported			
Volume		3335.7(4)			3335.7(4)			
Space group		Pnna				Pnna			
Hall group		-P 2a 2b	C			-P 2a 2bc			
Moiety formu	la	СЗО Н28	Cl2 N4	Zn, C2 H	H C13	?			
Sum formula		С32 Н29	Cl5 N4	Zn		C16 H14.50	C12.50	N2	Zn0.50
Mr		712.23				356.11			
Dx,g cm-3		1.418				1.418			

Ζ	4	8
Mu (mm-1)	4.926	4.926
F000	1456.0	1456.0
F000'	1459.77	
h,k,lmax	17,26,11	17,25,11
Nref	2904	2828
Tmin,Tmax	0.049,0.052	0.531,0.753
Tmin'	0.008	
Correction method= Tmax=0.753 AbsCorr	<pre># Reported T Limits: Tmin=0.533 = MULTI-SCAN</pre>	L
Data completeness=	0.974 Theta(max) = 65.886	
R(reflections) = 0.0	0839(2207) wR2(reflections)= 0.2599(2828)
S = 1.040	Npar= 213	

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C

<u>RINTA01 ALERT 3 C</u> The value of Rint is greater than 0.12	
Rint given 0.141	
PLAT020 ALERT 3 C The value of Rint is greater than 0.12	0.141 Report
<u>PLAT084_ALERT_3_C</u> High wR2 Value (i.e. > 0.25)	0.26 Report
PLAT341 ALERT 3 C Low Bond Precision on C-C Bonds	0.0065 Ang.
PLAT790 ALERT_4 C Centre of Gravity not Within Unit Cell: Resd. #	1 Note
C30 H28 Cl2 N4 Zn	
PLAT911 ALERT_3 C Missing # FCF Refl Between THmin & STh/L= 0	0.592 65 Report
<u>PLAT918 ALERT_3 C</u> Reflection(s) with I(obs) much Smaller I(calc) .	2 Check

Alert level G

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 5 Note PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 5 Report PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 1 Info PLAT045 ALERT 1 G Calculated and Reported Z Differ by a Factor ... 0.50 Check PLAT063_ALERT_4_G Crystal Size Likely too Large for Beam Size 0.80 mm PLAT072 ALERT 2 G SHELXL First Parameter in WGHT Unusually Large 0.19 Report PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 1 Report PLAT176_ALERT_4_G The CIF-Embedded .res File Contains SADI Records 1 Report PLAT187_ALERT_4_G The CIF-Embedded .res File Contains RIGU Records 1 Report PLAT300 ALERT 4 G Atom Site Occupancy of *Cl2 is Constrained at 0.5 Check And 5 other PLAT300 Alerts

More ...

PLAT302	<u>ALERT_4_G</u> Anion/Solvent Disorder Percentage =	100 Note	
PLAT720_	ALERT_4 G Number of Unusual/Non-Standard Labels	. 3 Note	
PLAT789	<u>ALERT_4 G</u> Atoms with Negative _atom_site_disorder_group	0 # 6 Check	
PLAT860	<u>ALERT_3</u> G Number of Least-Squares Restraints	28 Note	
PLAT909	ALERT_3 G Percentage of Observed Data at Theta(Max) Still	54 %	
PLAT978_	_ALERT_2_G Number C-C Bonds with Positive Residual Densit	y 1 Note	

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
7 ALERT level C = Check. Ensure it is not caused by an omission or oversight
21 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

4 ALERT type 2 Indicator that the structure model may be wrong or deficient

8 ALERT type 3 Indicator that the structure quality may be low

14 ALERT type 4 Improvement, methodology, query or suggestion

1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 11/08/2016; check.def file version of 04/08/2016

Datablock 1TCE200K - ellipsoid plot

checkCIF (basic structural check) running

Checking for embedded fcf data in CIF ... Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait ...

checkCIF/PLATON (basic structural check)

Structure factors have been supplied for datablock(s) 1MeCN

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. Please wait while processing Structure factor report <u>CIF dictionary</u> <u>Interpreting this report</u>

Datablock: 1MeCN

Bond precision:		C-C = (0.0055 A	Wavelength=1.54178		
Cell:	a=14.7	485(14) b=22.317(2) c=10		c=10.45	.4570(11)	
	alpha=	90	beta=90	gamma=9	0	
Temperature:	296 K					
		Calculat	ed		Reported	
Volume		3441.8(6)		3441.8(6)	
Space group		Pnna			Pnna	
Hall group		-P 2a 2b	C		-P 2a 2bc	
Moiety formu	la	C30 H28	Cl2 N4 Zn, 2(C2	H3 N)	?	
Sum formula		СЗ4 НЗ4	Cl2 N6 Zn		C17 H17 Cl N3 Zn0.50	
Mr		662.96			331.47	
Dx,g cm-3		1.279			1.279	
Ζ		4			8	
Mu (mm-1)		2.660			2.660	
F000		1376.0			1376.0	
F000'		1375.66				
h,k,lmax		17,26,12			0,0,0	
Nref		3020			2947	
Tmin,Tmax		0.555,0.	587		0.480,0.616	
Tmin'		0.329				
Correction m Tmax=0.616 A	ethod= bsCorr	# Report = REFDEL	ed T Limits: Tm F	in=0.480)	

Data completeness= 0.	976 Tł	heta(max)= 66.160		
R(reflections) = 0.038	4(2252)	wR2(reflections)=	0.1111(2947)
S = 1.017	Npar= 195			

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

Alert level B

PLAT390 ALERT 3 B Deviating Methyl C3S X-C-H Bond Angle	100 Degree
Alert level C	
PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors of	C1S Check
PLAT390_ALERT_3_C Deviating Methyl C3S X-C-H Bond Angle	117 Degree
PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. #	1 Note
C30 H28 Cl2 N4 Zn	
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.593	73 Report
PLAT978_ALERT_2_C Number C-C Bonds with Positive Residual Density	0 Note

Alert level G

PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimensi	on 1 Info
PLAT045 ALERT_1_G Calculated and Reported Z Differ by a Factor	0.50 Check
<u>PLAT344_ALERT_2_G</u> Unusual sp? Angle Range in Solvent/Ion for .	C1S Check
PLAT367_ALERT_2_G Long? C(sp?)-C(sp?) Bond C1S - C3S	1.68 Ang.
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	3 Note
PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) Still	41 %

 0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected
 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not

important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 11/08/2016; check.def file version of 04/08/2016

Datablock 1MeCN - ellipsoid plot

checkCIF (basic structural check) running

Checking for embedded fcf data in CIF ... Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait ...

checkCIF/PLATON (basic structural check)

Structure factors have been supplied for datablock(s) 2MeCN_2

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. Please wait while processing Structure factor report <u>CIF dictionary</u> <u>Interpreting this report</u>

Datablock: 2MeCN_2

Bond precision:		C-C = 0.0151 A				Wavelength=1.54178		
Cell:	a=14.8	955(11) b=22.5127(17)		c=10.2599(7)				
	alpha=	90	beta=9	0		gamma=9	0	
Temperature:	296 K							
		Calculat	ed				Reported	
Volume		3440.5(4)				3440.5(4)	
Space group		Pnna					Pnna	
Hall group		-P 2a 2b	C				-P 2a 2bc	
Moiety formu	la	C30 H28	Br2 N4	Zn,	2 (C2	H3 N)	?	
Sum formula		СЗ4 НЗ4	Br2 N6	Zn			C17 H17 Br N3 Zn0.50	
Mr		751.86					375.93	

Dx,g cm-3	1.452		1.452
Ζ	4		8
Mu (mm-1)	3.954		3.954
F000	1520.0		1520.0
F000'	1511.31		
h,k,lmax	17,26,12		17,26,11
Nref	3020		2890
Tmin,Tmax	0.827,0.888		
Tmin'	0.701		
Correction method=	Not given		
Data completeness=	0.957	Theta(max) = 66.205	
R(reflections) = 0.3	1060(1666)	wR2(reflections)= 0.3070(2890)
S = 0.960	Npar= 177	,	

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level B

RINTA01_ALERT_3_B The value of Rint is greater than 0.18 Rint given 0.214 <u>SHFSU01_ALERT_2_B</u> The absolute value of parameter shift to su ratio > 0.10 Absolute value of the parameter shift to su ratio given 0.152 Additional refinement cycles may be required. PLAT020 ALERT 3 B The value of Rint is greater than 0.12 0.214 Report <u>PLAT029_ALERT_3_B</u>_diffrn_measured_fraction_theta_full value Low . 0.957 Note PLAT080_ALERT_2_B Maximum Shift/Error 0.15 Why ? PLAT341_ALERT_3_B Low Bond Precision on C-C Bonds 0.01512 Ang. PLAT413 ALERT 2 B Short Inter XH3 .. XHn H2S3 .. H10 1.91 Ang. ..

Alert level C

PLAT052_ALERT_1_C Info on Absorption Correction Method Not Given Please Do ! PLAT082_ALERT_2_C High R1 Value 0.11 Report <u>PLAT084_ALERT_3_C</u> High wR2 Value (i.e. > 0.25) 0.31 Report PLAT202_ALERT_3_C Isotropic non-H Atoms in Anion/Solvent 3 Check PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors of C3S Check PLAT790 ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 Note C30 H28 Br2 N4 Zn <u>PLAT905_ALERT_3_C</u> Negative K value in the Analysis of Variance ... -1.226 Report PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.593 120 Report PLAT934_ALERT_3_C Number of (Iobs-Icalc)/SigmaW > 10 Outliers 1 Check

PLAT972_ALERT_2_C Check Calcd Residual Density 0.93A From	Br1	-1.52 eA-3
PLAT977_ALERT_2_C Check the Negative Difference Density on	H2S3	-0.46 eA-3
PLAT978_ALERT_2_C Number C-C Bonds with Positive Residual D	ensity	0 Note

Alert level G

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	3 Note
PLAT003 ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms	3 Report
PLAT004 ALERT 5 G Polymeric Structure Found with Maximum Dimension	1 Info
<u>PLAT045_ALERT_1_G</u> Calculated and Reported Z Differ by a Factor 0.50	0 Check
PLAT072 ALERT 2_G SHELXL First Parameter in WGHT Unusually Large	0.20 Report
PLAT172 ALERT 4 G The CIF-Embedded .res File Contains DFIX Records	2 Report
PLAT173 ALERT 4 G The CIF-Embedded .res File Contains DANG Records	1 Report
<u>PLAT344_ALERT_2_G</u> Unusual sp? Angle Range in Solvent/Ion for . C3S	Check
PLAT720 ALERT 4 G Number of Unusual/Non-Standard Labels	3 Note
PLAT860_ALERT_3_G Number of Least-Squares Restraints	Note

0 ALERT level A = Most likely a serious problem - resolve or explain
7 ALERT level B = A potentially serious problem, consider carefully
12 ALERT level C = Check. Ensure it is not caused by an omission or oversight
10 ALERT level G = General information/check it is not something unexpected

2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 11 ALERT type 2 Indicator that the structure model may be wrong or deficient 10 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF

PLATON version of 11/08/2016; check.def file version of 04/08/2016

Datablock 2MeCN_2 - ellipsoid plot

checkCIF (basic structural check) running

Checking for embedded fcf data in CIF ... Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait ...

checkCIF/PLATON (basic structural check)

Structure factors have been supplied for datablock(s) 3MeCN

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found.CIF dictionaryPlease wait while processingInterpreting to Structure factor report

Interpreting this report

Datablock: 3MeCN

Bond precision:		C-C =	0.0350 A	Wavelength=1.54178			
Cell:	a=15.0	77(3)	b=22.570(4)	c=10.41	2(2)		
	alpha=90		beta=90	gamma=9	0		
Temperature:	296 K						
		Calculat	ed		Reported		
Volume 3543.1(3543.1(1	2)		3543.2(11)		
Space group P		Pnna			Pnna		
Hall group -		-P 2a 2b	рС		-P 2a 2bc		
Moiety formula		C30 H28	I2 N4 Zn, C2 N		?		
Sum formula		С32 Н28	I2 N5 Zn		C16.50 H15.75 I N2.50 Zn0.50		
Mr		801.78			408.65		
Dx,g cm-3		1.503			1.532		
Ζ		4			8		
Mu (mm-1)		14.840			14.850		
F000		1564.0			1602.0		
F000'		1558.98					
h,k,lmax		17,26,12			17,26,12		
Nref		3105			3012		

Tmin,Tmax	0.210,0.227		0.004,0.056
Tmin'	0.041		
Correction method= Tmax=0.056 AbsCorr	<pre># Reported T = CYLINDER</pre>	Limits: Tmin=0.004	1
Data completeness=	0.970	Theta(max)= 66.084	
R(reflections) = 0.1	L506(796)	wR2(reflections)= 0.4593(3012)
S = 1.004	Npar= 155		

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level A

<u>RINTA01 ALERT 3 A</u> The value of Rint is greater than 0.25 Rint given 0.367

Author Response: Due to weak diffraction at high anlges as it was small crystal.

<u>PLAT020_ALERT_3_A</u> The value of Rint is greater than 0.12 0.367 Report Author Response: Due to weak diffraction at high anlges as it was small crystal.

PLAT084_ALERT_3_AHigh wR2 Value (i.e. > 0.25)0.46 ReportAuthor Response: Due to weak diffraction at high anlges as it was small crystal.

Alert level B

PLAT043_ALERT_1_BCalculated and Reported Mol. Weight Differ by ..15.52 CheckPLAT234_ALERT_4_BLarge Hirshfeld Difference C6--C7..PLAT342_ALERT_3_BLow Bond Precision on C-C Bonds0.035 Ang.

Alert level C

CHEMW03 ALERT 2 C The ratio of given/expected molecular weight as calculated from the atom site* data lies outside the range 0.99 <> 1.01 From the CIF: _cell_formula_units_Z 8 408.65 From the CIF: _chemical_formula_weight TEST: Calculate formula weight from atom site * atom mass num sum С 12.01 16.00 192.18 Н 1.01 14.00 14.11 Ν 14.01 2.50 35.02 65.39 0.50 32.69 Zn 126.90 1.00 126.90 T Calculated formula weight 400.91 PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ Please Check PLAT068 ALERT_1_C Reported F000 Differs from Calcd (or Missing)... Please Check PLAT082_ALERT_2_C High R1 Value 0.15 Report

PLAT241 ALERT 2_C High 'MainMol' Ueq as Compared to Neighbors of C1 Check PLAT242_ALERT_2_C_Low 'MainMol' Ueq as Compared to Neighbors of C16 Check PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C4 - C6 1.53 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 Note C30 H28 I2 N4 Zn PLAT905 ALERT_3_C Negative K value in the Analysis of Variance ... -5.464 Report PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ... -2.072 Report PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.593 94 Report PLAT972_ALERT_2_C Check Calcd Residual Density 0.92A From I1 -1.71 eA-3 PLAT978_ALERT_2_C Number C-C Bonds with Positive Residual Density 0 Note

Alert level G

FORMU01 ALERT 2 G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C16.5 H15.75 I1 N2.5 Zn0.5 Atom count from the _atom_site data: C16 H14 I1 N2.5 Zn0.5 CELLZ01 ALERT 1 G Difference between formula and atom_site contents detected. CELLZ01 ALERT 1 G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 8 From the CIF: _chemical_formula_sum C16.50 H15.75 I N2.50 Zn0.50 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff 128.00 4.00 132.00 С 112.00 14.00 Н 126.00 8.00 8.00 0.00 Ι Ν 20.00 20.00 0.00 Zn 4.00 4.00 0.00 PLAT002 ALERT 2 G Number of Distance or Angle Restraints on AtSite 3 Note PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 3 Report PLAT004 ALERT 5 G Polymeric Structure Found with Maximum Dimension 1 Info PLAT045 ALERT_1 G Calculated and Reported Z Differ by a Factor ... 0.50 Check PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large 0.20 Report PLAT172 ALERT 4 G The CIF-Embedded .res File Contains DFIX Records 4 Report PLAT186 ALERT 4 G The CIF-Embedded .res File Contains ISOR Records 2 Report PLAT300 ALERT_4_G Atom Site Occupancy of *N3S is Constrained at 0.5 Check PLAT300 ALERT 4 G Atom Site Occupancy of *C2S is Constrained at 0.5 Check PLAT302_ALERT_4_G Anion/Solvent Disorder Percentage = 67 Note

3 ALERT level A = Most likely a serious problem - resolve or explain
3 ALERT level B = A potentially serious problem, consider carefully
13 ALERT level C = Check. Ensure it is not caused by an omission or oversight
14 ALERT level G = General information/check it is not something unexpected
6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
11 ALERT type 2 Indicator that the structure model may be wrong or deficient

3 Note

8 ALERT type 3 Indicator that the structure quality may be low

PLAT860 ALERT 3 G Number of Least-Squares Restraints

7 ALERT type 4 Improvement, methodology, query or suggestion

1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 11/08/2016; check.def file version of 04/08/2016

Datablock 3MeCN - ellipsoid plot

checkCIF (basic structural check) running

Checking for embedded fcf data in CIF ... Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait ...

checkCIF/PLATON (basic structural check)

Structure factors have been supplied for datablock(s) 3MeCN_100K

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. Please wait while processing Structure factor report <u>CIF dictionary</u> <u>Interpreting this report</u>

Datablock: 3MeCN_100K

Bond precision:		C-C = 0.0103 A				Wavelength=1.54178			
		2002/14) b 02 7220/10)							
Cell: a=14.9		803(14) b=22.7330(19)		c=10.0998(8)					
	alpha=	90 beta=9		90		gamma=9	90		
Temperature:	100 K								
		Calculat	ed				Reported		
Volume		3439.5(5)					3439.5(5)		
Space group		Pnna					Pnna		
Hall group		-P 2a 2b	C				-P 2a 2bc		
Moiety formu	la	C30 H28	I2 N4	Zn, C	2 N		?		
Sum formula		C32 H28	I2 N5	Zn			C16.50 H17 I N2.50	Zn0.50	
Mr		801.78					409.91		
Dx,g cm-3		1.548					1.583		
Ζ		4					8		
Mu (mm-1)		15.287					15.298		
F000		1564.0					1612.0		
F000'		1558.98							
h,k,lmax		17,26,11					0,0,0		
Nref		2997					2940		
Tmin,Tmax		0.199,0.	217				0.009,0.017		
Tmin'		0.081							
Correction me Tmax=0.017 Al	ethod= bsCorr	# Report = REFDEI	ed T I F	Limits	: Tn	nin=0.00	9		

```
Data completeness= 0.981 Theta(max) = 65.867

R(reflections) = 0.0513(2285) wR2(reflections) = 0.1370(2940)

S = 1.154 Npar= 175
```

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

Alert level B

PLAT043 ALERT 1 B Calculated and Reported Mol. Weight Differ by .. 18.04 Check

Alert level C

CHEMW03_ALERT_2_C The ratio of given/expected molecular weight as calculated from the atom site* data lies outside the range 0.99 <> 1.01 From the CIF: _cell_formula_units_Z 8 From the CIF: _chemical_formula_weight 409.91 TEST: Calculate formula weight from atom site * atom mass num sum С 12.01 16.00 192.18 н 1.01 14.00 14.11 14.01 2.50 35.02 Ν 65.39 0.50 32.69 Zn 126.90 1.00 126.90 Ι Calculated formula weight 400.91 PLAT041 ALERT 1 C Calc. and Reported SumFormula Strings Differ Please Check <u>PLAT068_ALERT_1_C</u> Reported F000 Differs from Calcd (or Missing)... Please Check PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds 0.01031 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 Note C30 H28 I2 N4 Zn PLAT911 ALERT 3 C Missing # FCF Refl Between THmin & STh/L= 0.592 57 Report 0.61 eA-3 PLAT975 ALERT 2 C Check Calcd Residual Density 0.99A From N1S PLAT978 ALERT 2 C Number C-C Bonds with Positive Residual Density 0 Note

Alert level G

Н

136.00 112.00 24.00

FORMU01_ALERT_2_GThere is a discrepancy between the atom counts in the
_chemical_formula_sum and the formula from the _atom_site* data.
Atom count from _chemical_formula_sum:C16.5 H17 I1 N2.5 Zn0.5
Atom count from the _atom_site data: C16 H14 I1 N2.5 Zn0.5CELLZ01_ALERT_1_GDifference between formula and atom_site contents detected.CELLZ01_ALERT_1_GALERT: Large difference may be due to a
symmetry error - see SYMMG tests
From the CIF: _cell_formula_units_Z_8
From the CIF: _chemical_formula_sum C16.50 H17 I N2.50 Zn0.50
TEST: Compare cell contents of formula and atom_site dataatomZ*formula cif sites diff
C_132.00_128.00_4.00

I 8.00 8.00 0.00	
N 20.00 20.00 0.00	
Zn 4.00 4.00 0.00	
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 3 Note	
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms 3 Report	
PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 1 Info	
PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor 0.50 Check	
PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large 17.70 Why ?	
PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 2 Report	
PLAT300_ALERT_4_G Atom Site Occupancy of *N1S is Constrained at 0.5 Check	
PLAT300_ALERT_4_G Atom Site Occupancy of *C2S is Constrained at 0.5 Check	
<u>PLAT302_ALERT_4_G</u> Anion/Solvent Disorder Percentage = 67 Note	
PLAT860_ALERT_3_G Number of Least-Squares Restraints	
PLAT909 ALERT 3 G Percentage of Observed Data at Theta(Max) Still 54 %	
0 ALERT level A = Most likely a serious problem - resolve or explain	_
1 ALERT level B = A potentially serious problem, consider carefully	
8 ALERT level C = Check. Ensure it is not caused by an omission or oversight	
14 ALERT level G = General information/check it is not something unexpected	
6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data	
7 ALERT type 2 Indicator that the structure model may be wrong or deficient	
4 ALERT type 3 Indicator that the structure quality may be low	
5 ALERT type 4 Improvement, methodology, query or suggestion	
1 ALERT type 5 Informative message, check	

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 11/08/2016; check.def file version of 04/08/2016

Datablock 3MeCN_100K - ellipsoid plot

