

Supporting Information

A stable europium metal-organic framework as a dual-functional luminescent sensor for quantitatively detecting temperature and humidity

Dongbo Wang, Qinghua Tan, Lingjuan Liu and Zhiliang Liu ^{*}

College of Chemistry and Chemical Engineering, Key Lab of Nanoscience and Nanotechnology,
Inner Mongolia University, Hohhot, 010021, China *Corresponding author.

Fax: +86-471-4994375 Tel: +86-471- 4994375

*Email: cezliu@imu.edu.cn

Experimental Details

All the reagents were commercially available and used as provided without further purification.

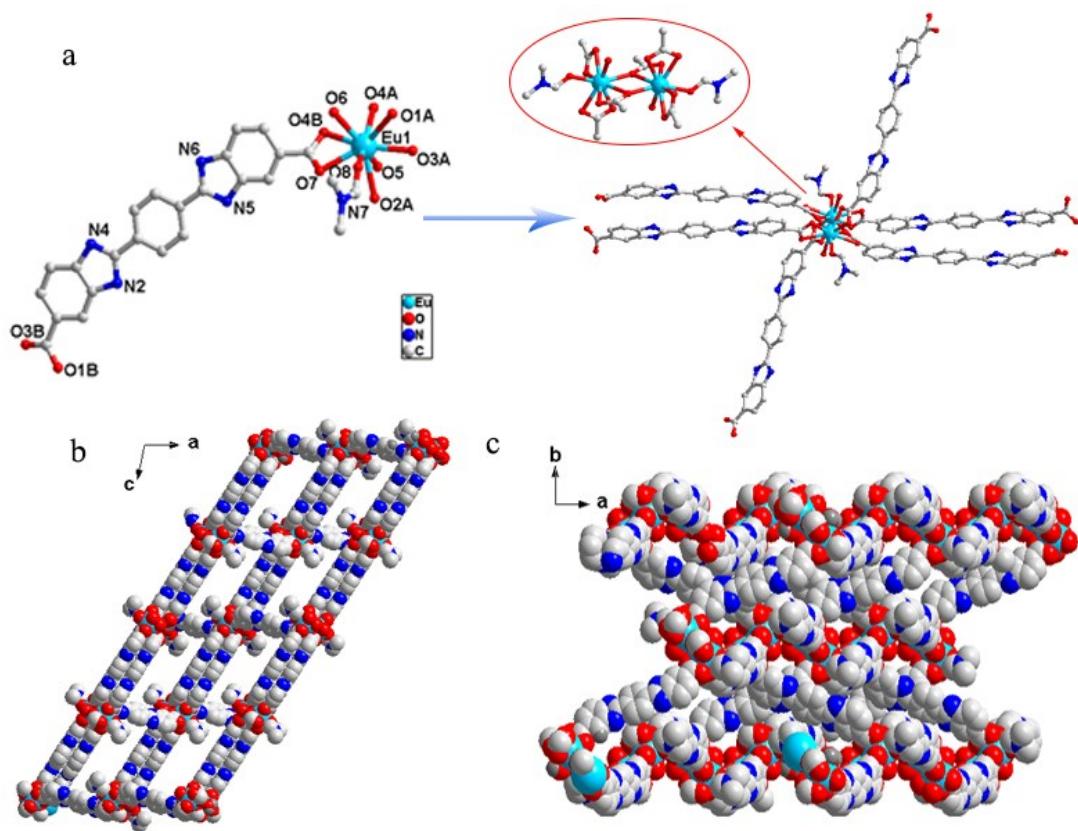
Fourier transform infrared (FTIR) spectra (KBr disk method) were collected with a TENSOR 27 FT-IR spectrophotometer in the wavenumber range from 4000 to 450 cm^{-1} . PXRD was carried out on an EMPY-REAN PANALYTICAL apparatus. TGA was carried out on a SDTQ600 thermal analyser; the samples were analysed under an N_2 atmosphere and at a heating rate of $10^\circ\text{C min}^{-1}$ over the temperature range $40\text{--}800^\circ\text{C}$. Room-temperature photoluminescence(PL) spectra for the powdered solid samples were collected on a Hitachi F-7000 fluorescence spectrophotometer. The PMT voltage was 700 V, the excitation slit was 2.5 nm and the emission slit was 5 nm. The temperature-dependent emission spectra were recorded on a Horiba Fluorolog-3-tau spectrophotometer.

Synthesis of $\{[\text{Eu}_2(\text{L})_3 \cdot (\text{H}_2\text{O})_2 \cdot (\text{DMF})_2] \cdot 16\text{H}_2\text{O}\}_n$

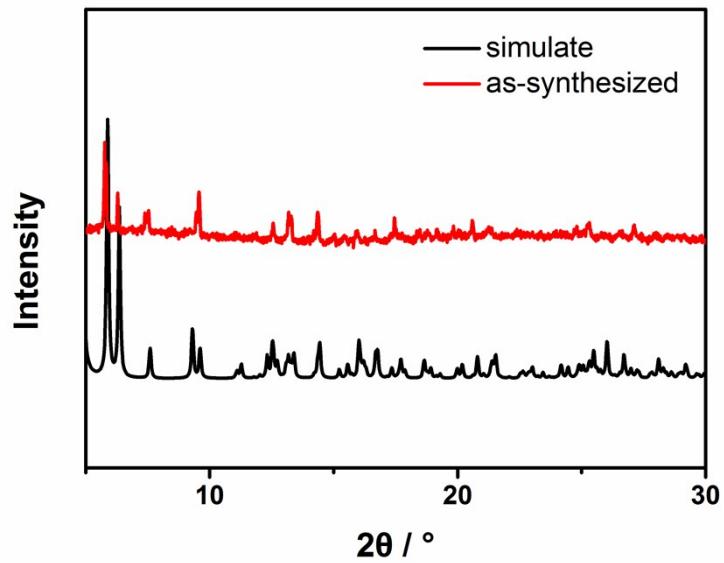
A mixture containing $\text{Eu}(\text{NO}_3)_3 \cdot 6\text{H}_2\text{O}$ (0.0446 g, 0.1 mmol), H_2L (0.0398 g, 0.1 mmol), H_2O (5 mL), and DMF (3 mL) was placed in a Teflon-lined stainless steel vessel (23 ml). After being sonicated in air for 10 min, the resulting suspension was heated at 120°C for 3 days and then cooled to room temperature at a rate of 5°C/h . Rod-shaped yellow crystals suitable for single-crystal X-ray diffraction were collected by filtration, washed with water and dried in air to afford 42 mg of product. Anal. Calcd. for $\text{C}_{72}\text{H}_{86}\text{Eu}_2\text{N}_{14}\text{O}_{32}$: C, 44.04; H, 4.42; N, 9.98. Found: C, 43.74; H, 4.53; N, 9.87. IR (cm^{-1} , KBr): 3368(vs), 1661(vs), 1590(s), 1537(s), 1497 (vs), 1467(m), 1399(vs), 1323(s), 1254(s), 956(m), 818 (s), 784(m).

Crystal data collection and refinement

Diffraction intensity data were collected at 293 K on a Bruker APEX II diffractometer equipped with a CCD area detector and graphite-monochromated Mo $\text{K}\alpha$ radiation ($\lambda = 0.71073 \text{\AA}$). Empirical absorption corrections were applied using the SADABS program.¹ The structure was solved by direct methods and was refined by the full-matrix least-squares method on F^2 using the SHELXTL-97 program; with all non-hydrogen atoms were refined with anisotropic thermal parameters.² Crystallographic data for **1** have been deposited at the Cambridge Crystallographic Data Center with the deposition number of CCDC 1436108. Experimental details for the structure analysis of **1** are given in Table 1. Selected bond lengths and angles are given in Table 2.


Table 1 Crystal data and structure refinements for compound **1**

Compound	1
Formula	C ₇₂ H ₈₆ Eu ₂ N ₁₄ O ₃₂
Mr	1963.45
Crystal system	Monoclinic
Space group	P2/c
a, Å	8.1737 (5)
b, Å	15.0092 (10)
c, Å	37.574 (2)
α, deg	90
β, deg	101.828 (2)
γ, deg	90
Volume, Å ³	4511.7(5)
Z	4
D _c , mg/m ³	1.445
μ, mm ⁻¹	1.463
F(000)	1996
Reflections collected	72739
Independent reflections	7782
Data/restraints/parameters	7782 / 1345 / 543
Goodness-of-fit on F ²	1.033
Final R indices [I>2σ (I)]	R1 = 0.0640, wR2 = 0.1437
Final R indices [all data]	R1 = 0.1218, wR2 = 0.1671
Largest diff. peak / hole, e. Å ⁻³	1.619/ -1.280


Table 2 The selected bond lengths and angles

Eu(1)-O(8)	2.321(6)	O(5)-Eu(1)-O(1)	125.33(19)
Eu(1)-O(4)#1	2.388(5)	O(6)-Eu(1)-O(1)	72.60(19)
Eu(1)-O(5)	2.412(5)	O(3)-Eu(1)-O(1)	52.18(18)
Eu(1)-O(6)	2.419(6)	O(8)-Eu(1)-O(7)#2	78.0(2)
Eu(1)-O(3)	2.470(5)	O(4)#1-Eu(1)-O(7)#2	117.15(19)
Eu(1)-O(1)	2.500(5)	O(5)-Eu(1)-O(7)#2	87.7(2)
Eu(1)-O(7)#2	2.501(6)	O(6)-Eu(1)-O(7)#2	79.3(2)
Eu(1)-O(2)	2.547(6)	O(3)-Eu(1)-O(7)#2	147.0(2)
Eu(1)-O(4)#2	2.576(5)	O(1)-Eu(1)-O(7)#2	147.0(2)
O(4)-Eu(1)#1	2.388(5)	O(8)-Eu(1)-O(2)	78.1(2)
O(4)-Eu(1)#3	2.576(5)	O(4)#1-Eu(1)-O(2)	124.61(18)
O(7)-Eu(1)#3	2.501(6)	O(5)-Eu(1)-O(2)	52.38(19)
O(8)-Eu(1)-O(4)#1	154.5(2)	O(6)-Eu(1)-O(2)	147.5(2)
O(8)-Eu(1)-O(5)	130.5(2)	O(3)-Eu(1)-O(2)	76.34(19)
O(4)#1-Eu(1)-O(5)	73.01(19)	O(1)-Eu(1)-O(2)	125.72(19)
O(8)-Eu(1)-O(6)	79.7(2)	O(7)#2-Eu(1)-O(2)	73.2(2)
O(4)#1-Eu(1)-O(6)	83.24(19)	O(8)-Eu(1)-O(4)#2	122.2(2)
O(5)-Eu(1)-O(6)	143.9(2)	O(4)#1-Eu(1)-O(4)#2	66.4(2)
O(8)-Eu(1)-O(3)	83.8(2)	O(5)-Eu(1)-O(4)#2	78.57(19)
O(4)#1-Eu(1)-O(3)	90.46(18)	O(6)-Eu(1)-O(4)#2	66.94(18)
O(5)-Eu(1)-O(3)	83.55(19)	O(3)-Eu(1)-O(4)#2	154.01(18)
O(6)-Eu(1)-O(3)	124.25(19)	O(1)-Eu(1)-O(4)#2	127.23(18)
O(8)-Eu(1)-O(1)	80.2(2)	O(7)#2-Eu(1)-O(4)#2	51.14(18)
O(4)#1-Eu(1)-O(1)	76.70(18)	O(2)-Eu(1)-O(4)#2	106.36(18)

Symmetry transformations used to generate equivalent atoms: #1: -x, y, -z+1/2; #2 : x+1, -y, z-1/2 ; #3: x-1, -y, z+1/2; #4 : -x+3, -y+1, -z.

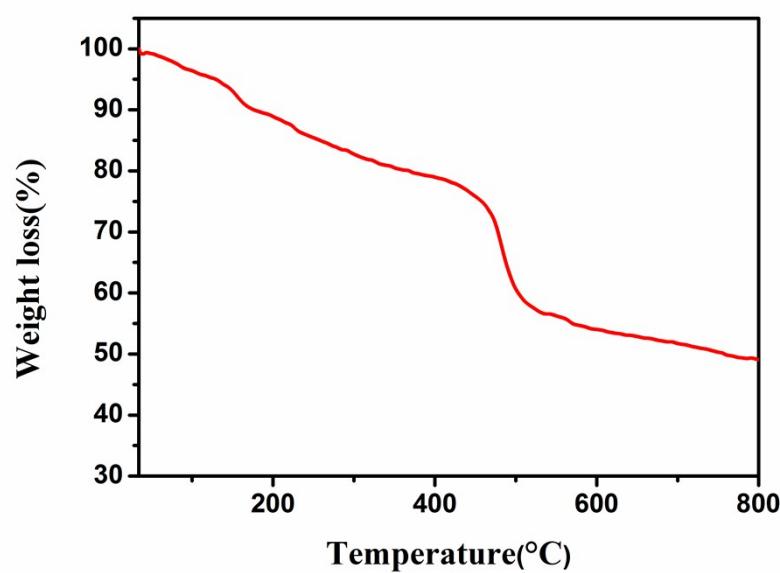
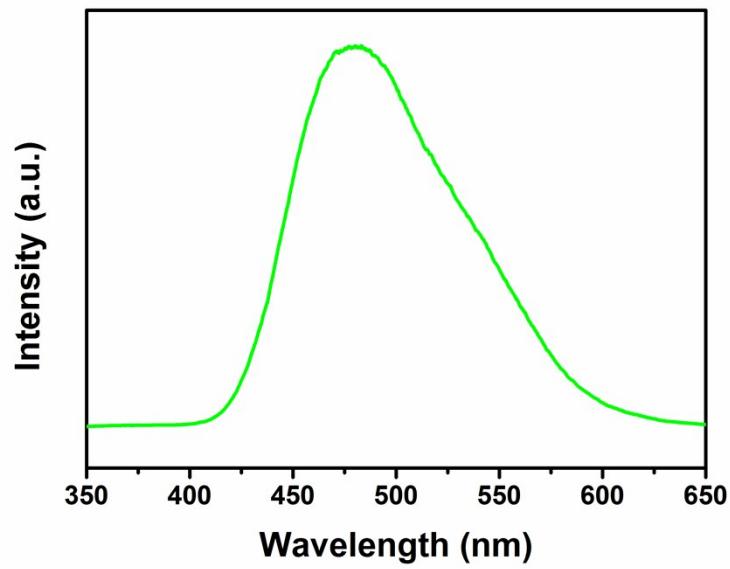
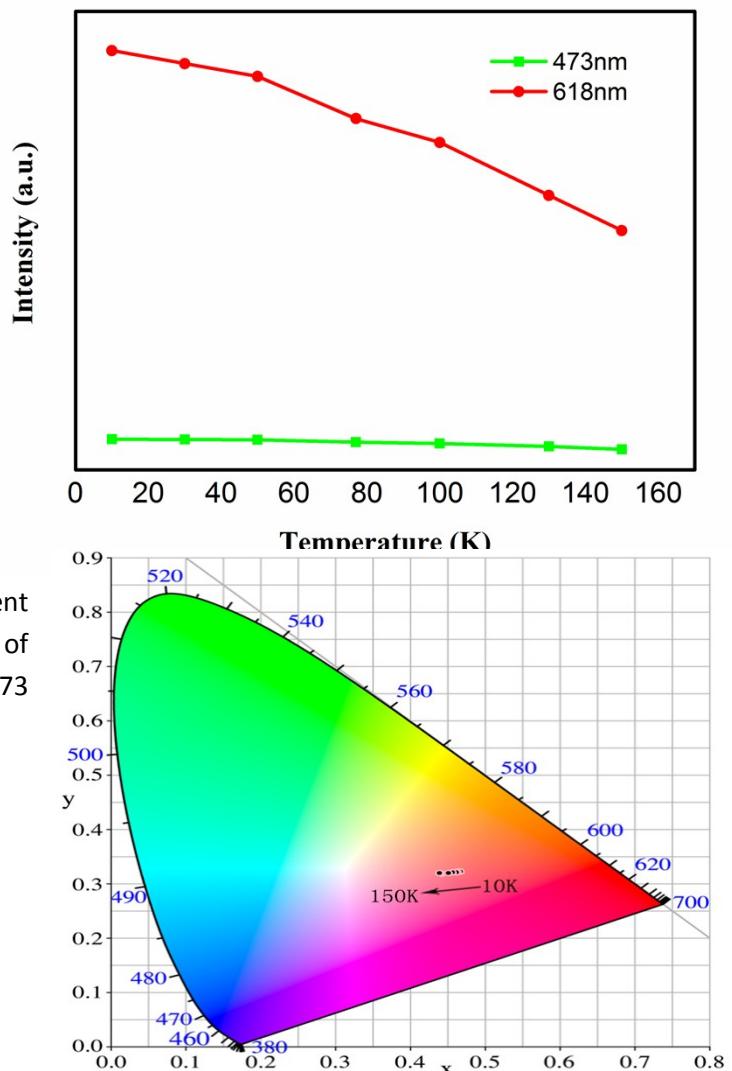

Fig. S1 (a) Coordination environment of Eu^{3+} in **1**; (b) Space fill model of **1** along *b*-axis ; (c) Space fill model of **1** along *c*-axis . Symmetry codes: A: $1 + x, -y, -1/2 + z$; B: $-x, y, -1/2 - z$.


Fig. S2 The simulated patterns and experimental powder XRD patterns of **1**.

Object 1 ^o	Object 2 ^o	Length ^o
O6 ^o	O1 ^o	2.726 ^o
N2 ^o	O9 ^o	2.861 ^o
N5 ^o	O12 ^o	2.736 ^o
O9 ^o	O7 ^o	2.964 ^o
O10 ^o	N6 ^o	2.811 ^o
O11 ^o	N1 ^o	3.084 ^o
O13 ^o	O11 ^o	2.863 ^o
O13 ^o	O2 ^o	2.912 ^o
O15 ^o	O9 ^o	2.735 ^o
O15 ^o	O13 ^o	2.888 ^o
O16 ^o	O14 ^o	2.783 ^o
O16 ^o	N4 ^o	3.059 ^o


Fig. S3 The hydrogen bonding table of **1**.


Fig. S4 Thermogravimetric analyses trace of **1**.

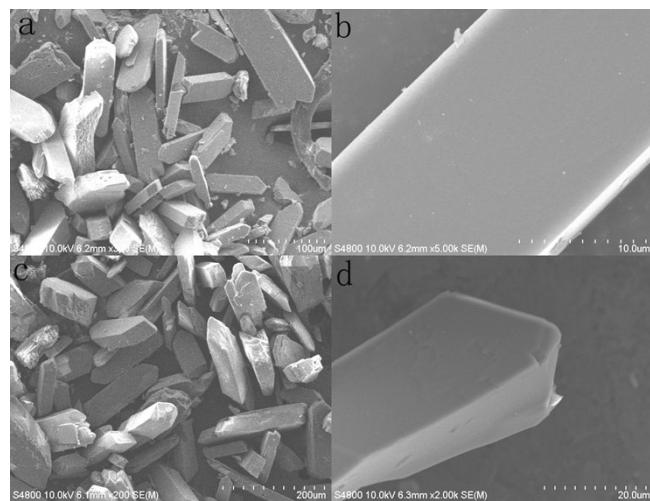

Fig. S5 The excitation spectra and emission spectra upon excitation at 280 nm for **1**.

Fig. S6 The emission spectra for ligand H_2L upon excitation at 280 nm.

Fig. S8 CIE of temperature-dependent luminescence color of **1**.

Fig. S9 SEM images of **1** (a, b) and **1** after exposure to moisture (RH 75%) for 3 days(c, d).

References

1. G.M.Sheldrick, *Program for Empirical Absorption Correction of Area Data Detector*, University of Göttingen, Germany, 1996.
2. G.M.Sheldrick, SHELXTL Version 5.1, *Bruker Analytical X-ray Instruments Inc.*, Madison, Wisconsin, USA, 1998.