Electronic Supplementary Information

3D Oxalato-Bridged Lanthanide(III) MOFs with Magnetocaloric, Magnetic and Photoluminescent Properties

Muhammad Nadeem Akhtar, *^a Yan-Cong Chen, ^a Murad A. AlDamen^b and Ming-Liang Tong^{*ac}

^aKey Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou510275, P. R. China. E-mail: nadeemchem@yahoo.com, tongml@mail.sysu.edu.cn

^bDepartment of Chemistry, Faculty of Science, the University of Jordan, Amman 11942, Jordan

^cState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.

Contents

Fig. S1:FTIR spectra of1-4.

Fig. S2: From left to right: a view along a-axis was rotated along c-axis to show the ordered structure of **1-4** and a cross-section shows the different connections between Ln inside the lattice to build up a 3D system.

Fig. S3: TGA curves of 1-4.

Table S1: Crystal data and structure refinement for 1-4

Table S2. Selected bond distances and angles for 1-4

Table S3. Some MOFs as well as reference gadolinium complexes with MCE behavior

Fig. S1: FTIR spectra of 1-4.

Fig. S2: From left to right: a view along a-axis was rotated along c-axis to show the ordered structure of **1-4** and a cross-section shows the different connections between Ln inside the lattice to build up a 3D system.

Fig. S3: TGA curves of 1-4

	1	2	3	4
Empirical formula	$C_9H_{15}GdNO_{11}$	C ₉ H ₁₅ TbNO ₁₁	C ₉ H ₁₅ DyNO ₁₁	C ₉ H ₁₅ HoNO ₁₁
Formula Weight	470.47	472.14	475.72	478.15
Temperature/K	153(2)	120(2)	137(2)	120(2)
Crystal system	Monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$
a /Å	10.3203(7)	10.314(2)	10.2355(4)	10.2074(4)
<i>b</i> /Å	11.7949(8)	11.767(2)	11.7090(4)	11.6791(4)
c /Å	11.5472(7)	11.499(2)	11.4476(4)	11.4238(4)
eta /°	105.129(2)	104.17(3)	104.393(1)	104.246(1)
$V/Å^3$	1356.89(15)	1353.2(5)	1328.90(8)	1319.99(9)
Ζ	4	4	4	4
$D_{ m calcd}$ /mg/mm ³	2.303	2.342	2.378	2.406
μ/mm^{-1}	4.949	5.345	5.686	6.058
Crystal size/mm ³	$0.16 \times 0.14 \times 0.12$	$0.15\times0.13\times0.12$	$0.11 \times 0.05 \times 0.04$	$0.09 \times 0.05 \times 0.04$
$2\theta_{max}$ to $2\theta_{min}(^{\circ})$	55.0 to 7.1	50.1 to 5.1	50.05 to 5.9	55.1 to 5.1
<i>F</i> (000)	912	1305	920	924
Reflections collected	10499	10003	16829	15157
Independent reflections	$3071 [R_{int} = 0.0353]$	2357 [$R_{int} = 0.0214$]	$2337[R_{int} = 0.0156]$	$3033 [R_{int} = 0.0320]$
restraints/parameters	0/202	0/202	0/202	0/206
$GOF(S)$ on F^2	1.044	1.112	1.102	1.080

Table S1.Crystal data and structure refinement for 1-4.

R_1	0.0353	0.0185	0.0156	0.0210
$wR_2[I>2\sigma(I)](all data)$	0.0824	0.0451	0.0398	0.433
largest diff. peak/hole/eÅ-3	2.95/-1.62	2.09/-82	1.93/-0.73	2.47/-0.83

 Table S2. Ball-and-Stick model of the environment around Ln and selected bond distances and angles for 1-4.

distances	Gd	Tb	Dy	Но
Ln ₁ -O ₁	2.409(3)	2.389(2)	2.378(2)	2.367(2)
Ln ₁ -O ₂ ⁱ	2.428(3)	2.402(2)	2.385(2)	2.378(2)
Ln ₁ -O ₃	2.528(3)	2.520(2)	2.517(2)	2.509(2)
$Ln_1-O_4^{i}$	2.472(3)	2.458(2)	2.452(2)	2.448(2)
Ln ₁ -O ₅	2.436(3)	2.415(2)	2.402(2)	2.390(2)
$Ln_1-O_6^{iii}$	2.454(3)	2.446(2)	2.438(2)	2.433(2)
Ln ₁ -O ₇	2.418(3)	2.405(2)	2.389(2)	2.379(2)
$Ln_1 - O_8^{ii}$	2.435(3)	2.419(2)	2.406(2)	2.394(2)
Ln_1-O_{1W}	2.444(3)	2.421(2)	2.410(2)	2.397(2)
Ln_1^{iii} -O ₆	2.454(3)	2.445(2)	2.438(2)	2.433(2)
$Ln_1^{ii}-O_8$	2.435(3)	2.419(2)	2.410(2)	2.397(2)
$Ln_1^{iv}-O_2$	2.428(3)	2.402(2)	2.385(2)	2.378(2)
$Ln_1^{iv}-O_4$	2.472(3)	2.458(2)	2.452(2)	2.448(2)
O_1 - C_1	1.257(5)	1.260(4)	1.263(4)	1.263(3)
O_2 - C_1	1.248(6)	1.247(4)	1.250(4)	1.249(3)
O ₃ -C ₂	1.254(6)	1.250(4)	1.252(4)	1.247(3)
O_4 - C_2	1.256(5)	1.263(4)	1.264(4)	1.254(4)
O ₅ -C ₃	1.245(5)	1.246(4)	1.247(4)	1.247(4)
O ₉ -C ₇	1.429(6)	1.426(4)	1.426(3)	1.426(4)
O ₁₀ -C ₉	1.459(7)	1.457(5)	1.448(4)	1.451(5)
O ₆ -C ₃	1.256(5)	1.259(3)	1.255(3)	1.254(4)
O_7-C_4	1.256(6)	1.252(4)	1.249(3)	1.251(4)

O_8-C_4	1.259(6)	1.259(4)	1.257(3)	1.254(4)
O ₉ -C ₈	1.492(9)	1.496(5)	1.508(4)	1.503(5)
C_1 - C_2	1.557(6)	1.549(4)	1.546(3)	1.536(4)
C ₃ -C ₃ ⁱⁱⁱ	1.557(8)	1.550(6)	1.546(5)	1.539(7)
C_4 - C_4 ⁱⁱ	1.547(9)	1.550(6)	1.552(4)	1.549(6)
$C_5-C_5^v$	1.513(10)	1.522(7)	1.524(5)	1.529(7)
C ₆ -C ₇	1.514(7)	1.516(5)	1.512(4)	1.510(5)
Ln…Ln ¹	6.224(5)	6.207(1)	6.174(4)	6.162(4)
$LnLn^{vi}$	6.253(4)	6.235(1)	6.199(4)	6.179(4)
$LnLn^{vi}$	6.324(4)	6.312(1)	6.274(4)	6.258(4)
O ₁ -Ln ₁ -O ₂ ⁱ	134.26(11)	134.44(7)	134.39(7)	134.32(8)
O_2^{i} -Ln ₁ -O ₃	145.81(11)	145.64(8)	145.87(7)	145.69(8)
O ₄ ⁱ -Ln ₁ -O ₃	121.98(11)	122.03(8)	122.81(8)	121.87(7)
O_5 - Ln_1 - O_6^{iii}	66.27(11)	66.35(8)	66.50(7)	66.72(8)
O_7 -Ln ₁ - O_8^{ii}	67.22(10)	67.55(8)	67.75(6)	67.96(7)
x, 1/2 - y, 1/2 + z; "	$1-x, 1-y, 2-z; {}^{m}2-x, 1$	-y, 2-z; w+x, 1/2-y	$,-1/2+z; v_{1-x,1-y,1}$	<i>I-z</i> , ^{<i>vi</i>} -x,-y,-z

 Table S3. MCE data of some Gadolinium structures.

	J kg ⁻¹ K ⁻¹	Debye		Reference
		Temperature (K)		
Gd ₇ (OH) ₆	23	?	MOF	1
[Gd ₂ (N-BDC) ₃ (dmf) ₄	29	45.4	MOF	2
(choline)[Gd(ox)(H ₂ O) ₃ Cl]Cl.H ₂	32.9	279		3
0				
$Gd(HCOO)(C_8H_4O_4)$	33.3	?	MOF	4
1	35.9	342.5	MOF	This article
$\mathrm{Gd}_3\mathrm{Ga}_5\mathrm{O}_{12}\left(\mathrm{GGG}\right)^*$	38.3	~500		5
[Gd(HCOO)(OAc) ₂ (H ₂ O) ₂	45.9 (9T)	80.4	MOF	2
$Gd_2(ox)_3(H_2O)_6 \cdot 0.6H_2O$	46.6	?	MOF	6
$[Gd(ox)(H_2O)_3Cl]$	48	282	2D network	7
$[Gd(HCOO)_3]_n$	55.9	168	MOF	8
$Gd_2O(OH)_4(H_2O)_2$	59.1	?	3D	9
Gd(OH) ₃	62	?	3D	9
[Gd(OH)CO ₃] _n	66.4	313	1D	10
$[Gd_4(\mu_3-OH)_4(\mu_2-H_2O)]^{8+}$	51.5		Cluster	11
$[\mathrm{Gd}_{10}(\mu_3-\mathrm{OH})_8]^{22+}$	31.2		Cluster	12
$[Gd(cit)(H_2O)]_{\infty}$	41.5		3D	13
$[Gd(nta)(H_2O)2]_{\infty}$	42.0		3D	13
$Gd_2(fum)_3(H_2O)_4{\cdot}3H_2O$	20.7 (5T)			14

$[Gd(OAc)_3(H2O)_{0.5}]_n$	47.7	?	MOF	15
$[{Gd(OAc)_3(H_2O)_2}_2].4H_2O$	40	61.6		16
$[Gd_4(OAc)_4(acac)_8(H_2O)_4]$	37.7	?		15

* This compound is commercially available as good MCE

¹J. W. Sharples, Y.-Z.Zheng, F. Tuna, Eric J. L. McInnes and D. Collison, *Chem. Commun.*, 2011, 47, 7650–7652.

²G. Lorusso, M. A. Palacios, G. S. Nichol, E. K. Brechin, O. Roubeau and M. Evangelisti, *Chem. Commun.*, 2012, **48**, 7592–7594.

³Y. Meng, Y.-C. Chen, Z.-M.Zhang, Z.-J.Lin, and M.-L. Tong, *Inorg. Chem*. 2014, **53**, 9052–9057.

⁴R. Sibille, T. Mazet, B. Malaman, and M. François, *Chem. Eur. J.*, 2012, **18**, 12970 – 12973.

⁵ R. D. McMichael, J. J. Ritter, and R. D. Shull, *J. of Appl. Phy.*, (1993), **73**, 6946–6948.

⁶R. Sibille, E. Didelot, T.Mazet, B. Malaman and M. François, APL Materials, 2014, 2, 124402–124407.

- ⁷Y. Meng, Y.-C. Chen, Z.-M.Zhang, Z.-J.Lin, and M.-L. Tong, *Inorg. Chem.* 2014, **53**, 9052–9057
- ⁸G. Lorusso, J. W. Sharples, E. Palacios, O. Roubeau, E. K. Brechin, R. Sessoli, A. Rossin, F. Tuna, E. J. L. McInnes, D. Collison and M. Evangelisti, *Adv. Mater.*, 2013, **25**, 4653–4656.
- ⁹ Y. Yang, Q.-C. Zhang, Y.-Y.Pan, L.-S.Long and L.-S.Zheng, Chem. Commun., 2015, **51**, 7317–7320.
- ¹⁰ S. Biswas, H. S. Jena, S. Goswami, S. Sanda and S. Konar, *Cryst. Growth Des.*, 2014, **14**, 1287–1295.
- ¹⁰ S. Biswas, H. S. Jena, S. Goswami, S. Sanda and S. Konar, *Cryst. Growth Des.*, 2014, **14**, 1287–1295.
- ¹¹S.-D. Han, X.-H. Miao, S.-J. Liu and X.-H. Bu, *Chem. An Asian J.*, 2014, **9**, 3116–3120.
- ¹²S.-J. Liu, J.-P. Zhao, J. Tao, J.-M. Jia, S.-D. Han, Y. Li, Y.-C. Chen and X.-H. Bu, *Inorg. Chem.*, 2013, **52**, 9163–9165

¹³ S.-J. Liu, C. Cao, C.-C. Xie, T.-F. Zheng, X.-L. Tong, J.-S. Liao, J.-L. Chen, H.-R. Wen, Z. Chang and X.-H. Bu, Dalton

Trans., 2016, 45, 9209-9215

¹⁴ L. Sedláková, J. Hanko, A. Orendáčová, M. Orendáč, C.-L. Zhou, W.-H. Zhu,B.-W. Wang, Z.-M. Wang, S.Gao, *J. of Alloys and Compounds*, 2009, **487**, 425–429.

- ¹⁵F.-S. Guo, J.-D. Leng, J.-L. Liu, Z.-S. Meng and M.-L. Tong, *Inorg. Chem.*, 2012, **51**, 405-413.
- ¹⁶S. T. Hatscher and W. Urland, Angew. Chem. Int. Ed. 2003, 42, 2862 2864.