Hexamethylenetetramine carboxyborane: synthesis, structural characterization and CO releasing property

T. I. Ayudhya^a, C. C. Raymond^b, N. N. Dingra^{a,†}

^a School of Pure and Applied Sciences, Florida SouthWestern State College, Fort Myers FL 33919, USA ^b Chemistry Department, State University of New York at Oswego, Oswego NY 13126, USA

[†]Email: <u>ndingra@fsw.edu</u>

Supporting Information

Table of Contents

Contents	Page
Table of Contents	S1
Calculation: Percent CO released calculated from myoglobin assay §	S2-S3
Calculation: Percent CO released calculated from ¹ H NMR [§]	S4
Calculation: Percent CO released calculated from meter readings §	S5
NMR Spectra of HMTA-CB in DMSO	S6-S8
NMR Spectra of HMTA-CB in D ₂ O	S9-S11
IR Spectra	S12
Hi-res Mass Spectrum	S13
Elemental Analysis	S14
¹ H NMR Spectra of HMTA-CB Decomposition	\$15-\$17
¹³ C NMR Spectra of HMTA-CB Decomposition	S18-S20
¹¹ B NMR Spectra of HMTA-CB Decomposition	S21-S23
Overlaid ¹ H NMR Spectra of HMTA-CB Decomposition over 12 day period	S24
¹ H NMR Spectra of HMTA Stability Test ^{§§}	\$25-\$26
¹³ C NMR Spectra of HMTA Stability Test ^{§§}	S27-S28

§, §§ Notes from the main text.

Calculation: Percent CO released calculated from myoglobin assay §

Preparation of Deoxy-Myoglobin (deoxy-Mb):

Horse heart myoglobin (3.52 mg, 0.200 μ mol, MM 17000) was dissolved in 300 μ L sodium phosphate buffer (50 mM, pH 7.4). This was mixed with 30 μ L of 100 mM (3.0 μ mol) sodium dithionite and run through a desalting column (GE) to separate excess dithionite from the deoxy-Mb stock solution. Note that sodium phosphate buffer (50 mM, pH 7.4) was degassed before use by vacuum/N₂ gas several times and bubbled with N₂ gas overnight in a sealed tube. All samples were prepared in a sealed glove box with constant feed of N₂ gas.

Deoxy-Mb Stock Solution Concentration and Stability Test:

To calculate the concentration of deoxy-Mb stock, 100 μ L was mixed with sodium phosphate buffer (900 μ L) and the absorbance at 560 nm measured. The exact concentration of Deoxy-Mb in the solution was calculated using absorption peak intensity at 560 nm (A_{560nm} = 0.942 a.u., ϵ_{560nm} = extinction coefficient of deoxy-Mb = 12.92 mM⁻¹cm⁻¹). Calculated concentration of deoxy-Mb was 72.9 μ M.

Myoglobin Assay Procedure:

Deoxy-Mb stock solution (100 μ L) and HMTA-CB (4.0 μ mol or 66 μ L of 12 mg/mL in sodium phosphate buffer) were mixed with sodium phosphate buffer (834 μ L) and placed in a sealed quartz cuvette. Control sample was set up the same way without HMTA-CB compound. A layer of mineral oil was added on top of the solution to prevent any exposure to oxygen and to prevent CO from escaping. Samples were incubated at 37 °C in N₂ Chamber. Formation of carbonmonoxy myoglobin (Mb-CO) was monitored by UV-Vis spectrophotometer (500-600 nm) at 0, 10, 20, 30, 40 and 60 minutes. The calculation for percent CO release is shown on **Table S1**.

Time	A ₅₄₀	A ₅₇₀	A ₅₄₀	A ₅₄₀	[Mb-CO]	Mb-CO	% CO ⁶
(minutes)			corrected ¹	changes ²	(M) ³	(µmol) ^{4,5}	
0	0.7560	0.8591	0.7560	0.0000	0.0000	0.0000	0.0000
10	0.8103	0.8693	0.8008	0.0448	3.017E-06	0.0030	0.0754
20	0.8636	0.8604	0.8623	0.1063	7.161E-06	0.0072	0.179
30	0.9196	0.8606	0.9179	0.1619	1.090E-05	0.0109	0.2726
40	0.9632	0.8574	0.9651	0.2091	1.408E-05	0.0141	0.3521
60	1.0516	0.7843	1.1518	0.3959	2.666E-05	0.0267	0.6664

¹ A_{540} corrected = (A_{540}) x ($A_{570 t=0}$ / $A_{570 t=min}$)

² A_{540} changes = $A_{540 t=min} - A_{540 t=0}$

³ [Mb-CO] = A₅₄₀ corrected / ((14850 $M^{-1}cm^{-1}$) x (1 cm)); ϵ_{540nm} = extinction coefficient of Mb-CO³ = 14.85 m $M^{-1}cm^{-1}$

⁴ Mb-CO = [Mb-CO] x (1.000 mL) x (1 L/1000 mL) x ($10^{6} \mu L/1 L$)

⁵ Mb-CO (μ mol) = CO (μ mol)

⁶ % CO = (CO (μmol) / 4.00 (HMTA-CB μmol)) x 100

Note:

- Absorption spectrum of Deoxy-Mb sample without HMTA-CB (control sample) does not change over the period of 1 hour of incubation. We assumed that there was no degradation of deoxy-Mb nor the formation of Mb-CO under the controlled experimental condition.

- Mb-CO and deoxy-Mb spectra have four isosbestic points at 510, 550, 570, and 585 nm. The absorption values at 570 nm (A_{570}) were used to correct the maximum absorption values of Mb-CO at 540 nm (A_{540}).

Calculation: Percent CO released calculated from ¹H NMR [§]

Scheme 1. ¹H NMR spectra of HMTA-CB and HMTA with peak assignments

Table S2. Normalized Integrals of HMTA and HMTA-CB peaks from ¹H NMR spectra and calculations for % decomposition of HMTA-CB.

	Normalized Integrals ^a			
Peak	0 hour	1 hour	24 hours	
P1	6.000	6.000	6.000	
P2	0.969	1.047	3.486	
Р3	2.096	2.160	2.139	
P4	0.961	0.933	0.921	
P(HMTA) ^b	0 ^c	0.114	2.565	
% Auto-Decomposition ^d	0 ^c	0.9268	17.467	

^a NMR spectra were processed by using Mnova program.

^b P(HMTA) = P2-P4

^c We assume that HMTA is not present at 0 hour and 1 mole of HMTA-CB gives 1 mole of CO.

^d % Auto-Decomposition = (P(HMTA) / (P1 + 2 x (P3 + P4))) x 100

Calculation: Percent CO released calculated from meter reading §

Table S3. Conversion of ppm to % CO released by auto-decomposition of HM	ІТА-СВ
--	--------

Sample ^a Incubation Time (hours)	CO-Meter Reading (ppm) ^b	mol% CO Released ^c
1	22	1.15
3	96	5.01
6	163	8.51
9	199	10.39
12	227	11.86
14	253	13.21
24	434	22.67

 $^{\rm a}$ 4.0 μmol of 60 mM solution was used for each trial in this experiment

^b Averages from triplicates or more trials

^c Example calculation for the first hour

1 ppm CO = 1.17 μg/L

Solubility of CO in water at 37 °C is 20 μ g/mL, however it was ignored since the volume of the solution used (66 μ L) was too small to make a difference in the results.

Convert ppm in 50 mL head space to μ g: (22 ppm) * [(1.17 μ g/L) / 1 ppm] * (0.050 L) = 1.29 μ g Converting μ g to mol: (1.29 μ g) * (1 mol /28 g) = 0.046 μ mol

mol% = (0.046 μmol/4 μmol)*100 = 1.15 mol%

Figure S1. ¹H NMR of HMTA-CB in DMSO.

Figure S2. ¹¹B NMR of HMTA-CB in DMSO.

Figure S3. ¹³C NMR of HMTA-CB in DMSO.

Figure S4. ¹H NMR of HMTA-CB in D_2O .

Figure S5. ¹¹B NMR of HMTA-CB in D_2O .

Figure S6. ¹³C NMR of HMTA-CB in D_2O .

Figure S7. IR spectra of HMTA and HMTA-CB for comparison.

Figure S8. High Resolution Mass Spectrum of HMTA-CB.

Chemical Formula: C₇H₁₅BN₄O₂

Exact Mass: 198.13

Molecular Weight: 198.03

m/z: 198.13 (100.0%), 197.13 (24.8%), 199.13 (9.1%), 198.14 (1.9%)

Elemental Analysis: C, 42.46; H, 7.63; B, 5.46; N, 28.29; O, 16.16

Table S4. HMTA-CB Elemental Analysis

Elements	Calculated	Run #1	Run #2	Average	% Error
С	42.46	42.64	42.63	42.635	0.412153
Н	7.63	7.66	7.65	7.655	0.327654
Ν	28.29	28.27	28.38	28.325	0.123719

Figure S9. Decomposition of HMTA-CB monitored by ¹H NMR at 0 hour. HMTA-CB was dissolved in D_2O at 12 mg/mL concentration and incubated at 37 °C. Spectra were recorded at specified times. Solvent DHO at 4.79 ppm overlaps with one of the peaks from sample.

Figure S10. Decomposition of HMTA-CB monitored by ¹H NMR at 1 hour. HMTA-CB in D_2O at 37 °C. Solvent DHO at 4.79 ppm overlaps with one of the peaks from sample. A new peak emerges at 4.88 ppm.

Figure S11. Decomposition of HMTA-CB monitored by ¹H NMR at 24 hour. HMTA-CB in D_2O at 37 °C. The new peak corresponding to the HMTA protons is now shifted to 4.84 ppm and merged with one of the peaks from HMTA-CB. For accurate estimation of the ratio, a small peak area from the far right is subtracted from the new peak.

Figure S12. Decomposition of HMTA-CB monitored by 13 C NMR at 0 hour. HMTA-CB was dissolved in D₂O at 12 mg/mL concentration and incubated at 37 °C. Spectra were recorded at specified times.

Figure S13. Decomposition of HMTA-CB monitored by ¹³C NMR at 1 hour. HMTA-CB in D_2O at 37 °C. The presence of free HMTA was determined by the appearance of a singlet peak at 72.00 ppm.

Figure S14. Decomposition of HMTA-CB monitored by 13 C NMR at 24 hour. HMTA-CB in D₂O at 37 °C. HMTA peak at 72.00 ppm gets taller with time.

Figure S15. Decomposition of HMTA-CB monitored by ¹¹B NMR at 0 hour. HMTA-CB was dissolved in D_2O at 12 mg/mL concentration and incubated at 37 °C. Spectra were recorded at specified times.

Figure S16. Decomposition of HMTA-CB monitored by ¹¹B NMR at 1 hour. HMTA-CB in D_2O at 37 °C. The boron atom on HMTA-CB is a triplet at -15.47 ppm in D_2O while the product of decomposition, boric acid, shows a weak singlet at 19.54 ppm.

Figure S17. Decomposition of HMTA-CB monitored by ¹¹B NMR at 24 hour. HMTA-CB in D_2O at 37 °C. Boric acid peak at 19.54 ppm gets taller with time.

Figure S18. Percent decomposition determined by peak integration of ¹H NMR over a period of 12 days. 60 mM HMTA-CB solution in D₂O was incubated at 37 °C and the spectra taken at specified times. (a) Overlaid ¹H NMR spectra taken at 0, 1, 2, 3, 6, and 12 days. Disappearance of HMTA-CB peaks at 4.97, 4.73, and 4.69 ppm is compared with the appearance of HMTA peak at 4.84 ppm. Note: HDO peak at δ 4.79 ppm is removed from stacked spectra for clearer view of the peaks. (b) Kinetics of CO release process monitored by ¹H NMR. Integrated ratios of the protons are used for calculating percent decomposition.

Figure S19. Stability test of HMTA monitored by ¹H NMR at 0 hour. HMTA was dissolved in D_2O at 12 mg/mL concentration and incubated at 37 °C. The solvent, DHO, peak shows at 4.79 ppm (top).

Figure S20. Stability test of HMTA monitored by ¹H NMR at 6 days. The solvent, DHO, peak shows at 4.79 ppm (top). No new peaks are observed on the spectrum (bottom).

Figure S21. Stability test of HMTA monitored by ¹³C NMR at 0 hour. HMTA was dissolved in D_2O at 12 mg/mL concentration and incubated at 37 °C. A single peak corresponding to 6 equivalent carbons of HMTA is shown at 72.00 ppm.

Figure S22. Stability test of HMTA monitored by ¹³C NMR at 6 days. No new peaks are observed on the spectrum.