Electronic Supplementary Information (ESI[†])

Thermal, Vibrational and Optical Properties of PrLuO₃ Interlanthanides from Hydrothermally-Derived Precursors

Júlia C. Soares,^a Kisla P. F. Siqueira,^a Paulo C. de Sousa Filho,^b Roberto L. Moreira^c and Anderson Dias^a

^aDepartamento de Química, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Ouro Preto-MG, 35400-000, Brazil. E-mail: anderson_dias@iceb.ufop.br

^bDepartamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, Brazil

^cDepartamento de Física, ICEx, Universidade Federal de Minas Gerais, C.P. 702, Belo Horizonte-MG, 30123-970, Brazil

Fig. S1 (a) XRD pattern and (b) Raman spectrum for the hydrothermally-synthesized $Pr(OH)_3$ and LuO(OH) precursors obtained at 250°C, showing the coexistence of these two starting phases (as indicated).

Fig. S3 (a,c) Excitation (λ_{em} =655 nm, corrected for lamp intensity) and (b,d) absorption spectra of the PrLuO₃ samples annealed at (a,b) 1400°C (mixed *P6₃/mmc* + *Pnma* sample) and (c,d) 1600°C (phase-pure *Pnma* sample). Insets in (a) and (c) show noncorrected excitation spectra in linear scale; (b) and (d) were mathematically calculated from diffuse reflectance spectra of powders diluted in MgO, taking pure MgO as blank.

Fig. S4 Emission spectrum of the PrLuO₃ sample annealed at 1600°C monitoring the ${}^{3}P_{0} \rightarrow {}^{3}F_{2}$ transition under 290°C (black squares), and Gaussian peak fits of Stark components (green lines) and cumulative fit peak (red line).

