Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is Corrine Supplementary Material (ESI) for Dalton Transactions. This journal is Correction of Chemistry 2016

Supporting Information

Spin-crossover system between S=5/2 and S=1/2 states observed in the iron (III) porphyrin complexes axially coordinated two pyridine-N oxide derivatives

Yuki Ide,^a Nami Murai,^a Hiroki Ishimae,^a Masaaki Suzuki,^a Shigeki Mori,^{*b} Masashi Takahashi,^{*c} Mikio Nakamura,^{*c} Katsumi Yoshino,^d and Takahisa Ikeue^{*a}

- a. Department of Chemistry, Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan.
- b. Advanced Reserch Support Center, Ehime University, 2-5, Bunkyo-cho, Matsuyama, 790-8577, Japan.
- c. Department of Chemistry, Faculty of Science, Toho University, Funabashi 274-8510, Japan
- d. Shimane Institute for Industrial Technology, 1 Hokuryo, Matsue, Shimane 690-0816, Japan

E-mail: ikeue@riko.shimane-u.ac.jp

Table of Contents

Crystallographic data: Table S1	S2
Curie plots: Fig. S1-S6	
EPR g values: Table S2	S6
Van't Hoff plots: Fig. S7	S6
⁵⁷ Fe Mössbauer spectra: Fig. S8	S6
ORTEP drawings: Fig. S9-S11	S7-S8
Crystal packing diagrams: Fig. S12-S15	
Spin crossover system: Scheme S1	

Compound	1a · 2CH ₂ Cl ₂	1¢	1¢	1e · 2 toluene	2 · CH ₂ Cl ₂ + 2.5 toluene
Temperature (K)	100(2)	300(2)	100(2)	100(2)	100(2)
Chemical formula	C66H60N6O2CI2FeBF4 2(CH2CI2)	C ₆₈ H ₆₆ N ₆ O ₂ FeBF ₄	C ₆₈ H ₆₆ N ₆ O ₂ FeBF ₄	C ₇₀ H ₇₂ N ₈ O ₂ FeBF ₄ - 2(C ₇ H ₈)	C ₅₈ H ₂₈ N ₈ O ₂ F ₂₀ FeBF ₄ · CH ₂ Cl ₂ ·2.5(C ₇ H ₈)
Formula weight	1352.61	1141.92	1141.92	1384.28	1706.80
Crystal size (mm)	0.15 x 0.15 x 0.10	0.25 x 0.10 x 0.08	0.50 x 0.40 x 0.40	0.20 x 0.05 x 0.02	0.18 x 0.06 x 0.02
Crystal color	brown	brown	brown	black	black
Crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic	Triclinic
pace group	PT	C ₃ /c 0.71075	C ₂ /c 0.71075	PI	PI
Wave length (Å)	0.71075			0.71075	0.71075
(Å)	12.983(5)	25.363(5)	25.480(6)	14.352(2)	14.756(2)
5 (Å)	13.837(5)	14.931(3)	14.606(3)	15.273(2)	15.299(2)
:(Å)	19.824(6)	17.644(4)	17.569(4)	18.230(3)	18.938(2)
z (°)	109.92(2)	90	90	70.093(8)	92.515(14)
3 (°)	95.24(2)	112.617(3)	114.161(3)	76.760(9)	108.315(10)
(°)	100.09(2)	90	90	77.769(9)	117.216(8)
Volume (Å ³)	3252(2)	6168(2)	5966(2)	3618(1)	3619.3(8)
2	2	4	4	2	2
Density (Calculated) (g cm ⁻³)	1.381	1.230	1.271	1.271	1.611
Absorption coefficient (mm ⁻¹)	0.540	0.305	0.316	0.273	0.410
Absorption correction	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
Max. and Min. transmission	0.948 and 0.863	0.976 and 0.928	0.987 and 0.984	0.995 and 0.947	0.992 and 0.930
(000)	1398	2396	2396	1462	1724
9 Range for data collection (°)	2.01 to 28.00	1.62 to 28.00	2.29 to 28.00	1.90 to 26.5	2.12 to 26.5
ndex ranges	-17<=h<=17, -18<=k<=18, -26<=l<=26	-33<=h<=33, -19<=k<=19, -23<=<=23	-33<=h<=33, -19<=k<=19, -23<=l<=23	-18<=h<=18, -19<=k<=19, -22<=l<=22	-18<=h<=18, -19<=k<=19, -23<=l<=23
Reflections collected	15661	7452	7218	14974	14590
ndependent reflections	12684 [R _{int} = 0.0683]	5678 [R _{int} = 0.0690]	6683 [R _{int} = 0.0985]	10409 [R _{int} = 0.0977]	10094 [R _{int} = 0.0977]
tefinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data/restraints/parameters	15661 / 6 / 836	7452 / 81 / 401	7218 / 60 / 401	14974 / 0 / 922	14590 / 375 / 1163
Goodness-of-fit on F ²	1.053	1.142	1.142	1.141	1.046
inal R indices (I>20(I))	R, = 0.0683, wR, = 0.1439	R ₃ = 0.0690, wR ₃ = 0.1802	R ₁ = 0.0985, wR ₂ = 0.1941	R ₁ = 0.0977, wR ₂ = 0.1846	R ₁ = 0.0988, wR ₂ = 0.2119
R indices (all data)	R ₁ = 0.0843, wR ₂ = 0.1552	R ₁ = 0.0897, wR ₁ = 0.1975	R, = 0.1067, wR, = 0.1986	R ₁ = 0.1382, wR ₂ = 0.2062	R ₁ = 0.1373, wR ₂ = 0.2368
Largest peak and hole (e Å *3)	+0.81 and -0.91	+0.29 and -0.54	+0.57 and -0.50	+0.56 and -0.46	+0.90 and -0.51

Table S1 Crystallographic data of **1a-e** and **2**.

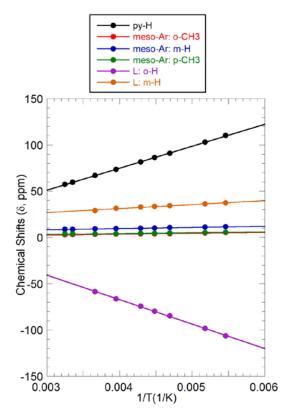


Fig. S1 Curie plots of proton signals of ${\bf 1a}$ taken in CD_2Cl_2 solution.

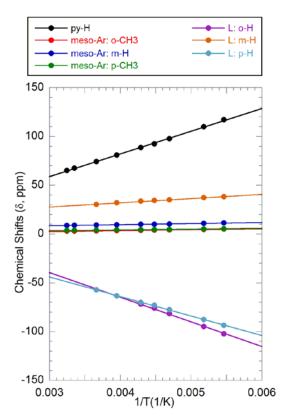


Fig. S2 Curie plots of proton signals of ${\bf 1b}$ taken in CD_2Cl_2 solution.

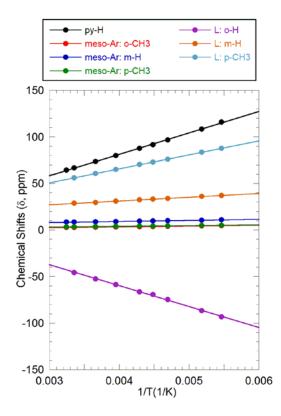


Fig. S3 Curie plots of proton signals of $\boldsymbol{1c}$ taken in $\mathsf{CD}_2\mathsf{Cl}_2$ solution.

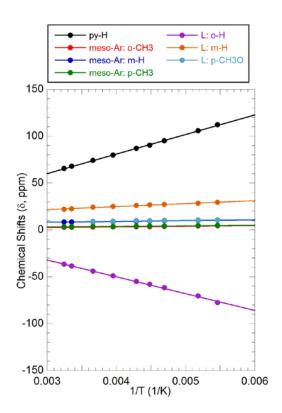


Fig. S4 Curie plots of proton signals of $\boldsymbol{1d}$ taken in $\mathsf{CD}_2\mathsf{Cl}_2$ solution.

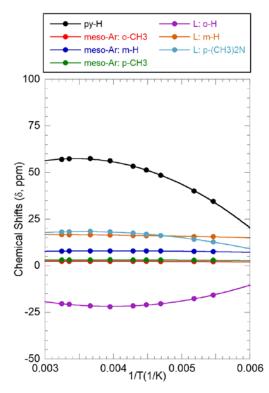


Fig. S5 Curie plots of proton signals of $\mathbf{1e}$ taken in CD_2Cl_2 solution.

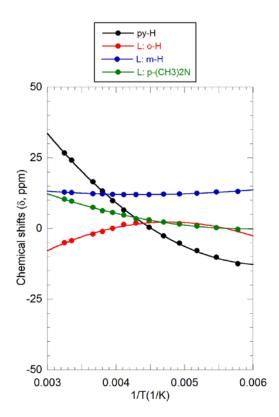


Fig. S6 Curie plots of proton signals of ${f 2}$ taken in CD₂Cl₂ solution.

	EPR (CH ₂ Cl ₂ / toluene, 15 K)			_	EPR (solid, 4 K)			
Complex	g_1	g ₂	g ₃		g ₁	g ₂	g ₃	
1a	5.94	5.94	1.99	5	5.62	5.62	1.98	
1b	5.88	5.88	1.99	5	5.68	5.68	1.95	
1c	5.89	5.89	1.99	2	2.41	2.23	1.92	
1d	5.68	5.68	1.99	2	2.41	2.23	1.99	
	2.41	2.22	1.92					
1e	2.39	2.21	1.93	2	2.41	2.22	1.93	
2e	2.42	2.22	1.92	2	2.37	2.19	1.95	

Table S2 EPR g values of **1a-e** and **2**.

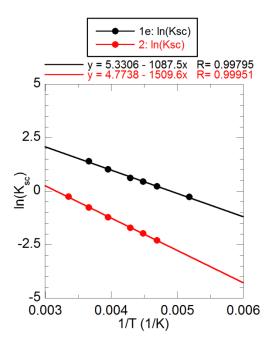


Fig. S7 Van't Hoff plots for **1e**(black) and **2**(red).

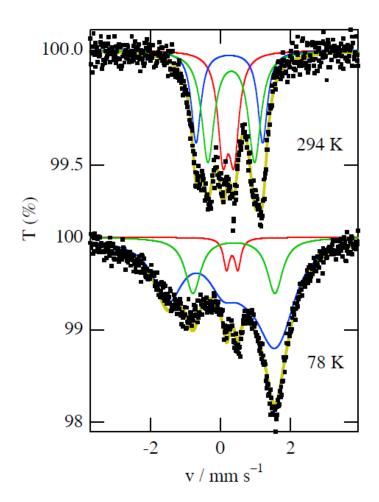


Fig. S8 ⁵⁷Fe Mössbauer spectra of **1e** taken for a microcrystalline sample at 294 (upper) and 78 K (lower).

Spin-crossover system between S=5/2 and S=1/2 states observed in the iron (III) porphyrin complexes axially coordinated two pyridine-N oxide derivatives

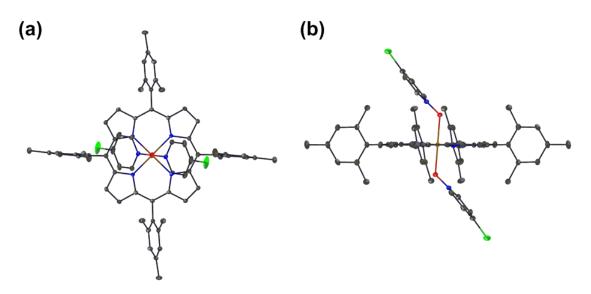


Fig. S9 ORTEP drawing of $1a \cdot 2CH_2Cl_2$ (100 K) seen along the: (a) O-Fe-O and (b) N-Fe-N axis, showing the thermal ellipsoids at 30% probability level. Hydrogen, solvent, and counter anion atoms are omitted for clarity.

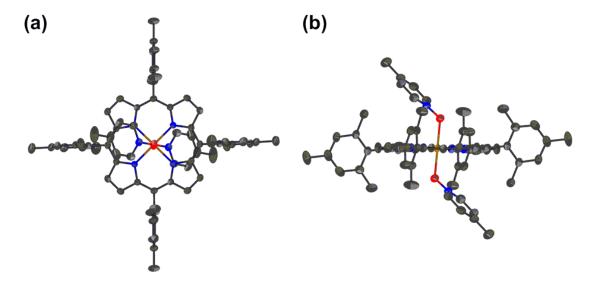


Fig. S10 ORTEP drawing of **1c** (300 K) seen along the: (a) O-Fe-O and (b) N-Fe-N axis, showing the thermal ellipsoids at 30% probability level. Hydrogen, solvent, and counter anion atoms are omitted for clarity.

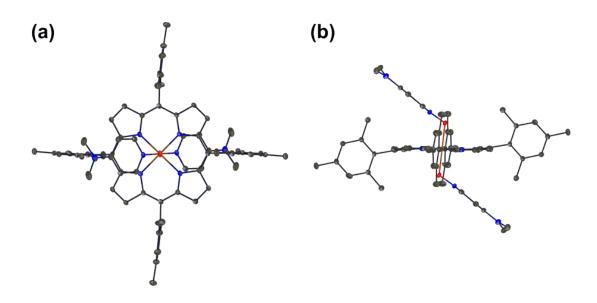


Fig. S11 ORTEP drawing of **1e** • 2toluene (100 K) seen along the: (a) O-Fe-O and (b) N-Fe-N axis, showing the thermal ellipsoids at 30% probability level. Hydrogen, solvent, and counter anion atoms are omitted for clarity.

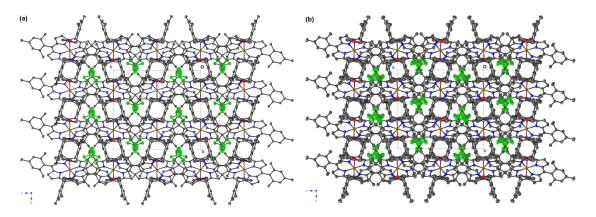


Fig. S12 Crystal packing diagrams of **1c** viewed along with the a axis at 100K(a) and 300K(b).

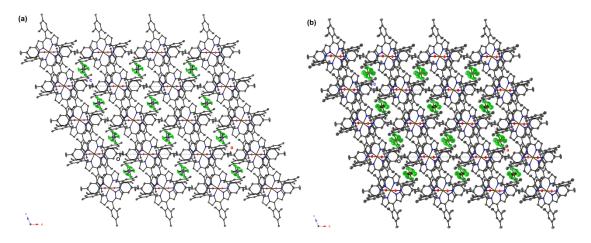


Fig. S13 Crystal packing diagrams of 1c viewed along with the b axis at 100K(a) and 300K(b).

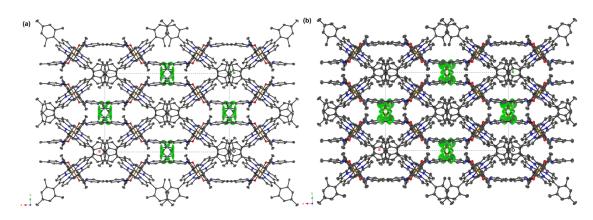


Fig. S14 Crystal packing diagrams of **1c** viewed along with the c axis at 100K(a) and 300K(b).

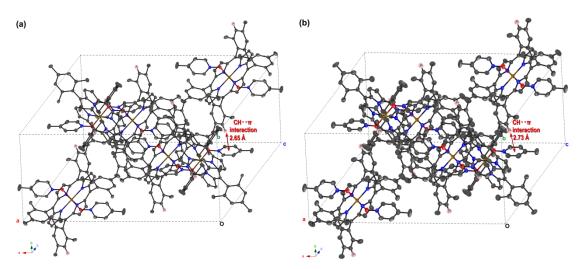
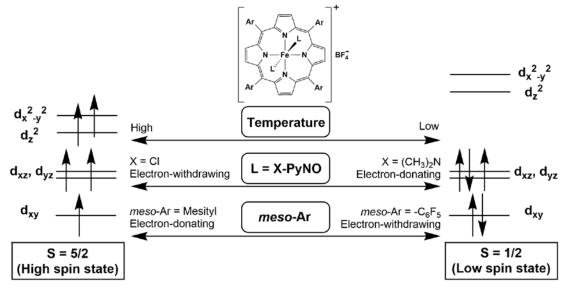



Fig. S15 Crystal packing diagrams of **1c** for one unit cell at 100K(a) and 300K(b).

Scheme S1 Spin crossover between S=5/2(high spin state) and S=1/2(low spin state) for these Fe(III) porphyrin complexes.