Supporting Information

Over or under: Hydride attack at the metal versus the coordinated nitrosyl ligand in ferric nitrosyl porphyrins

E. G. Abucayon,^a R. L. Khade,^b D. R. Powell,^a M. J. Shaw,^c Y. Zhang,^{*b} and G. B. Richter-Addo^{*a}

Contents:

- 1. Figure S1. ¹H NMR spectra of the product mixture from the reaction of [(PPDME)Fe(NO)(L)]OTf with [NBu₄]BH₄ and the analogous labeled reaction employing ¹⁵N-labeled precursor [(PPDME)Fe(¹⁵NO)(5-MeIm)]OTf (page S2)
- 2. Figure S2. ¹H NMR spectroscopic detection of the H₂ (in CDCl₃) byproduct from the decomposition of (PPDME)Fe(HNO)(1-MeIm) (page S3)
- 3. Table S1. NO Vibrational Frequencies and ¹H NMR Chemical Shifts (page S3)
- 4. Table S2. Relative Energies with Respect to Reactants (kcal/mol) (page S4)
- 5. Table S3. Selected DFT-Calculated Geometric Parameters (page S4)
- 6. Table S4. Charges of Selected Atoms and Groups (page S4)
- 7. Table S5. Bond Strength Energies (kcal/mol) (page S4)
- 8. Figure S3. Molecular structure of the cation of [(PPDME)Fe(NO)(5-MeIm)]SbF₆ (page S5)
- 9. Experimental details for X-ray structure of [(PPDME)Fe(NO)(5-MeIm)]SbF₆ (page S5)
- Table S6. Crystal data and structure refinement for [(PPDME)Fe(NO)(5-MeIm)]SbF₆ (page S7)
- 11. Table S7. Bond lengths (Å) and angles (°) for [(PPDME)Fe(NO)(5-MeIm)]SbF₆ (page S8)
- 12. Figure S4. Molecular structure of [(OEP)Fe(NO)]OTf (page S13)
- 13. Experimental details for X-ray structure of [(OEP)Fe(NO)]OTf (page S13)
- 14. Table S8. Crystal data and structure refinement for [(OEP)Fe(NO)]OTf.2(CH₂Cl₂) (page S15)
- 15. Table S9. Bond lengths (Å) and angles [°] for [(OEP)Fe(NO)]OTf.2(CH₂Cl₂) (page S16)

Figure S1. (a) ¹H NMR spectra of, (*top*) the product mixture from the reaction of [(PPDME)Fe(NO)(5-MeIm)]OTf with [NBu₄]BH₄, (*bottom*) the product mixture from the analogous reaction employing the ¹⁵N-labeled precursor [(PPDME)Fe(¹⁵NO)(5-MeIm)]OTf. (b) ¹H NMR spectra of, (*top*) the product mixture from the reaction of [(PPDME)Fe(NO)(1-MeIm)]OTf with [NBu₄]BH₄, (*bottom*) the product mixture from the analogous reaction employing the ¹⁵N-labeled precursor [(PPDME)Fe(¹⁵NO)(1-MeIm)]OTf with [NBu₄]BH₄, (*bottom*) the product mixture from the analogous reaction employing the ¹⁵N-labeled precursor [(PPDME)Fe(¹⁵NO)(1-MeIm)]OTf. The peak at 4.62 ppm (labeled *) observed in both reactions is assigned to H₂ gas (see also Figure S3). The downfield (*Inset*) regions of the spectra focus on the ¹⁵N-isotope-sensitive Fe-*H*NO signals; these HNO signals were integrated against a C₆H₆ internal standard. The product mixtures also contain the final paramagnetic (PPDME)Fe(NO) products.

Figure S2. ¹H NMR spectroscopic detection of the H_2 (in CDCl₃) byproduct from the decomposition of (PPDME)Fe(HNO)(1-MeIm). (A) Spectrum of the reaction headspace. (B) Spectrum of an authentic H_2/N_2 mixture. (C) Spectrum of the blank CDCl₃ solvent.

System ^a			$\delta_{\rm H}$	$v_{\rm NO}$
			(ppin)	(cm)
Fe(TTP)(5-MeIm)(HNO)	Expt		14.26	1381
	Calc	and the second	14.60	1371
		÷		
Fe(TTP)(1-MeIm)(HNO)	Expt		14.02	1389
	Calc		14.55	1369
		n n n n n n n n n n n n n n n n n n n		
Fe(OEP)(5-MeIm)(HNO)	Expt	2	13.99	1383
	Calc	and the second sec	13.91	1369
Fe(OEP)(1-MeIm)(HNO)	Expt	3	13.72	1388
	Calc	3-00-00 00 00 00 00 00 00 00 00 00 00 00	13.92	1371

Table S1. NO Vibrational Frequencies and ¹H NMR Chemical Shifts

a) The orientation of the NO moiety of HNO is *cis* to imidazole Me substituent, which was found to be slightly more favorable than the *trans* isomer, as reported previously.²

Pathway	System	ΔE_{SCF}	$\Delta E_{SCF+ZPE}$	ΔH	ΔG
	R1+R2	0.00	0.00	0.00	0.00
	I-1 _N	-12.22	-10.71	-10.62	-1.33
N-Pathway	TS_N	-12.08	-11.04	-11.39	-1.08
	$I-2_N$	-49.69	-45.51	-46.25	-33.91
	P-1 _N + P2	-87.46	-79.42	-81.17	-69.04
H-Pathway	R1+R2	0.00	0.00	0.00	0.00
	$I-1_H/I-2_H$	-30.30	-28.58	-28.79	-18.90
	TS _H	-30.13	-28.78	-29.41	-18.51
	P-1 _H + P2	-59.92	-54.39	-55.98	-44.72

Table S2. Relative Energies with Respect to Reactants (in kcal/mol)

 Table S3. Selected DFT-Calculated Geometric Parameters

Pathway	R_{Fe-NO}	R _{N-O}	R_{B-H}	R_{N-H}	R_{Fe-H}	∠FeNO	∠HNO	∠NFeH
	(Å)	(Å)	(Å)	(Å)	(Å)	(°)	(°)	(°)
N-Pathway								
R1	1.601	1.120				179.9		
R2			1.232					
I-1 _N	1.615	1.111	1.230	2.984		174.5	73.4	
TS _N	1.624	1.113	1.235	2.441		167.3	90.2	
$I-2_N$	1.743	1.209	1.213	1.042		130.9	114.2	
P-1 _N	1.736	1.214		1.036		131.5	113.1	
P2 ^{a)}			1.313/					
			1.188					
H-pathway								
I-1 _H / I-2 _H	1.671	1.128	1.327		1.594	174.0		169.8
TS _H	1.670	1.128	1.330		1.592	175.2		172.0
P-1 _H	1.769	1.152			1.477	155.2		165.4

^{a)} Bridging/terminal B-H bond lengths respectively.

Table S4. Charges of Selected Atoms and Groups (Unit: 'e')						
Pathway	Q _{Fe}	Q_{BH3}	$Q_{\rm H}$	Q_N	Qo	Q _{Por}
R1	0.999			0.101	0.063	-0.163
R2		-0.705	-0.295			
TS-1 _N	1.123	-0.710	-0.154	0.182	0.051	-0.493
TS-1 _H	-0.020	-0.469	0.121	0.261	0.020	0.087

Table S5. Bond Strength Energies (in kcal/mol)

Table 55. Dolid Strength Energies (III Keal/III01)					
Ligand	Bond	ΔE_{SCF}	$\Delta E_{SCF+ZPE}$	ΔH	ΔG
None	Fe-NHO	11.52	7.98	8.80	-4.25
	H-NO	56.76	48.91	50.43	41.54
5-MeIm	Fe-NHO	16.86	11.37	12.90	-3.30
	H-NO	62.25	54.34	55.87	46.95

Figure S3. Molecular structure and atom labeling of the cation of [(PPDME)Fe(NO)(5-MeIm)]SbF₆

Experimental for X-ray structural determination of [(PPDME)Fe(NO)(5-MeIm)]SbF₆

The sample was twinned by a 2-fold rotation about the [1 - 1 0] axis. The twin ratio refined to 0.4655(12). Both the anion at Sb1B and the free organic cation were located on inversion centers. Oxygen O1 was disordered with refined occupancies of 0.67(6) and 0.33(6) for the unprimed and primed atoms. Atom C35 was disordered with refined occupancies of 0.649(17) and 0.351(17) for the unprimed and primed atoms. Both anion sites were disordered with refined occupancies of 0.705(9) and 0.295(9) for the A site atoms and 0.678(7) and 0.322(7) for the B site atoms. Restraints on the positions of all disordered atoms and the displacement parameters of all non-hydrogen atoms were required. The displacement ellipsoids were drawn at the 50% probability level.

A purple, block-shaped crystal of dimensions 0.20 x 0.08 x 0.06 mm was selected for

structural analysis. Intensity data for this compound were collected using a diffractometer with a Bruker APEX ccd area detector (1) and graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The sample was cooled to 100(2) K. Cell parameters were determined from a non-linear least squares fit of 9985 peaks in the range $2.43 < \theta < 24.17^{\circ}$. A total of 68484 data were measured in the range $1.384 < \theta < 25.902^{\circ}$ using ϕ and ω oscillation frames. The data were corrected for absorption by the empirical method (2) giving minimum and maximum transmission factors of 0.779 and 0.925. The data were merged to form a set of 16006 independent data with R(int) = 0.0417 and a coverage of 100.0 %. The triclinic space group $P\overline{1}$ was determined by statistical tests and verified by subsequent refinement. The structure was solved by direct methods and refined by full-matrix least-squares methods on F^2 (3). The positions of hydrogens bonded to carbons and imidazolium nitrogens were initially determined by geometry and were refined using a riding model. The hydrogen bonded to N6 was located on a difference map, and its position was refined independently. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 (1.5 for methyl) times the isotropic equivalent displacement parameters of the bonded atoms. A total of 751 parameters were refined against 1337 restraints and 16006 data to give $wR(F^2) =$ 0.1854 and S = 1.010 for weights of w = $1/[\sigma^2 (F^2) + (0.1100 \text{ P})^2 + 1.4500 \text{ P}]$, where P = $[F_0^2$ + $2F_c^2$] / 3. The final R(F) was 0.0646 for the 11046 observed, [F > 4 σ (F)], data. The largest shift/s.u. was 0.000 in the final refinement cycle. The final difference map had maxima and minima of 1.234 and -0.560 e/Å³, respectively.

Acknowledgment

The authors thank the National Science Foundation (grant CHE-0130835) and the University of Oklahoma for funds to purchase of the X-ray instrument and computers. This structure was determined by Douglas R. Powell.

References

- (1) (a) Data Collection: APEX2 (2007) Bruker AXS Inc., Madison, Wisconsin, USA. (b) Data Reduction: SAINT (2007) Bruker AXS Inc., Madison, Wisconsin, USA.
- (2) L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke (2015). J. Appl. Cryst., 48, 3-10.
- (3) (a) G. M. Sheldrick. *Acta Cryst.* **2015**, *A71*, 3-8. (b) G. M. Sheldrick. *Acta Cryst.* **2015**, *C71*, 3-8.

Deposition of the crystal structure with the CCDC

CCDC 1484724 contains the supplementary crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/conts/retrieving.html

Table S6. Crystal data and structure refinement for [(PPDME)Fe(NO)(5-MeIm)]SbF₆ \cdot 0.5[C₄H₇H₂]SbF₆.

Empirical formula	$(C_{40}H_{42}FeN_7O_5)^+ 0.5(C_4H_7O_5)^+ 0.5(C_5H_7O_5)^+ 0.5(C_5H_7O_5)^- 0.5(C_5H_7O_5)^+ 0.5(C_5H_7O_5)^- 0.5(C_5H_7O_5$	$(_7N_2)^+ 1.5(SbF_6)^-$	
	C ₄₂ H _{45.5} F ₉ Fe N ₈ O ₅ Sb _{1.5}		
Formula weight	1151.84		
Crystal system	triclinic		
Space group	$P\overline{1}$		
Unit cell dimensions	a = 12.0388(10) Å	$\alpha = 67.9924(14)^{\circ}$	
	<i>b</i> = 14.0169(12) Å	β= 68.7999(14)°	
	c = 16.3482(14) Å	γ= 64.7066(14)°	
Volume	2244.7(3) Å ³		
Z, Z'	2, 1		
Density (calculated)	1.704 Mg/m ³		
Wavelength	0.71073 Å		
Temperature	100(2) K		
<i>F</i> (000)	1154		
Absorption coefficient	1.311 mm ⁻¹		
Absorption correction	semi-empirical from equiv	valents	
Max. and min. transmission	0.925 and 0.779		
Theta range for data collection	1.384 to 25.902°		
Reflections collected	68484		
Independent reflections	16006 [R(int) = 0.0417]		
Data / restraints / parameters	16006 / 1337 / 751		
$wR(F^2 \text{ all data})$	wR2 = 0.1854		
R(F obsd data)	R1 = 0.0646		
Goodness-of-fit on F^2	1.010		
Observed data $[I > 2\sigma(I)]$	11046		
Largest and mean shift / s.u.	0.000 and 0.000		
Largest diff. peak and hole	1.234 and -0.560 e/Å ³		

 $\overline{wR2} = \{ \Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}$ R1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|

Fe(1)-N(7)	1.654(5)	C(10)-C(11)	1.375(9)
Fe(1)-N(5)	1.990(5)	C(10)-H(10)	0.9500
Fe(1)-N(3)	1.996(5)	C(11)-C(12)	1.449(8)
Fe(1)-N(2)	1.998(5)	C(12)-C(13)	1.339(9)
Fe(1)-N(4)	1.999(5)	C(12)-C(29)	1.518(9)
Fe(1)-N(1)	2.007(5)	C(13)-C(14)	1.454(9)
O(1)-C(27)	1.227(10)	C(13)-C(33)	1.501(9)
O(1')-C(27)	1.225(10)	C(14)-C(15)	1.373(9)
O(2)-C(27)	1.313(8)	C(15)-C(16)	1.378(9)
O(2)-C(28)	1.436(8)	C(15)-H(15)	0.9500
O(3)-C(31)	1.211(8)	C(16)-C(17)	1.445(9)
O(4)-C(31)	1.320(8)	C(17)-C(18)	1.374(9)
O(4)-C(32)	1.446(8)	C(17)-C(34)	1.472(10)
O(5)-N(7)	1.133(6)	C(18)-C(19)	1.441(9)
N(1)-C(4)	1.368(7)	C(18)-C(36)	1.480(9)
N(1)-C(1)	1.373(7)	C(19)-C(20)	1.373(8)
N(2)-C(9)	1.361(7)	C(20)-H(20)	0.9500
N(2)-C(6)	1.392(7)	C(21)-C(22)	1.272(10)
N(3)-C(14)	1.376(8)	C(21)-H(21)	0.9500
N(3)-C(11)	1.381(8)	C(22)-H(22A)	0.9500
N(4)-C(16)	1.378(7)	C(22)-H(22B)	0.9500
N(4)-C(19)	1.382(8)	C(23)-H(23A)	0.9800
N(5)-C(37)	1.311(7)	C(23)-H(23B)	0.9800
N(5)-C(38)	1.382(8)	C(23)-H(23C)	0.9800
N(6)-C(37)	1.334(8)	C(24)-H(24A)	0.9800
N(6)-C(39)	1.364(8)	C(24)-H(24B)	0.9800
N(6)-H(6)	0.85(7)	C(24)-H(24C)	0.9800
C(1)-C(20)	1.382(8)	C(25)-C(26)	1.522(9)
C(1)-C(2)	1.448(8)	C(25)-H(25A)	0.9900
C(2)-C(3)	1.359(9)	C(25)-H(25B)	0.9900
C(2)-C(21)	1.467(9)	C(26)-C(27)	1.492(9)
C(3)-C(4)	1.450(8)	C(26)-H(26A)	0.9900
C(3)-C(23)	1.499(8)	C(26)-H(26B)	0.9900
C(4)-C(5)	1.389(8)	C(28)-H(28A)	0.9800
C(5)-C(6)	1.394(8)	C(28)-H(28B)	0.9800
C(5)-H(5)	0.9500	C(28)-H(28C)	0.9800
C(6)-C(7)	1.435(8)	C(29)-C(30)	1.526(8)
C(7)-C(8)	1.372(8)	C(29)-H(29A)	0.9900
C(7)-C(24)	1.495(8)	C(29)-H(29B)	0.9900
C(8)-C(9)	1.452(8)	C(30)-C(31)	1.498(9)
C(8)-C(25)	1.496(8)	C(30)-H(30A)	0.9900
C(9)-C(10)	1.387(8)	C(30)-H(30B)	0.9900

Table S7. Bond lengths [Å] and angles [°] for [(PPDME)Fe(NO)(5-MeIm)]1.5SbF₆.0.5(C₄H₇H₂)⁺.

C(32)-H(32A)	0.9800	Sb(1')-F(6A')	1.838(6)
C(32)-H(32B)	0.9800	Sb(1')-F(5A')	1.840(6)
C(32)-H(32C)	0.9800	Sb(1')-F(2A')	1.884(7)
C(33)-H(33A)	0.9800	Sb(1')-F(3A')	1.885(7)
C(33)-H(33B)	0.9800	Sb(1')-F(1A')	1.886(7)
C(33)-H(33C)	0.9800	Sb(1B)-F(1B')#1	1.818(12)
C(34)-C(35')	1.254(12)	Sb(1B)-F(1B')	1.818(12)
C(34)-C(35)	1.261(12)	Sb(1B)-F(2B)#1	1.856(4)
C(34)-H(34)	0.9500	Sb(1B)-F(2B)	1.856(4)
C(34)-H(34')	0.9500	Sb(1B)-F(2B')#1	1.856(14)
C(35)-H(35Å)	0.9500	Sb(1B)-F(2B')	1.856(14)
С(35)-Н(35В)	0.9500	Sb(1B)-F(3B')	1.857(14)
C(35')-H(35C)	0.9500	Sb(1B)-F(3B')#1	1.857(14)
C(35')-H(35D)	0.9500	Sb(1B)-F(1B)#1	1.860(3)
C(36)-H(36A)	0.9800	Sb(1B)-F(1B)	1.860(3)
С(36)-Н(36В)	0.9800	Sb(1B)-F(3B)#1	1.863(4)
C(36)-H(36C)	0.9800	Sb(1B)-F(3B)	1.863(4)
С(37)-Н(37)	0.9500	N(1C)-C(5C)	1.33(2)
C(38)-C(39)	1.359(9)	N(1C)-C(2C)	1.39(2)
C(38)-H(38)	0.9500	N(1C)-H(1C)	0.8800
C(39)-C(40)	1.500(9)	C(2C)-N(3C)	1.31(2)
C(40)-H(40A)	0.9800	C(2C)-H(2C)	0.9500
C(40)-H(40B)	0.9800	N(3C)-C(4C)	1.33(3)
C(40)-H(40C)	0.9800	N(3C)-H(3C)	0.8800
Sb(1A)-F(3A)	1.859(3)	C(4C)-C(5C)	1.41(3)
Sb(1A)- $F(4A)$	1.859(3)	C(4C)-H(4C)	0.9500
Sb(1A)- $F(1A)$	1.861(3)	C(5C)-C(6C)	1.51(2)
Sb(1A)- $F(5A)$	1.862(3)	C(6C)-H(6CA)	0.9800
Sb(1A)- $F(2A)$	1.862(3)	C(6C)-H(6CB)	0.9800
Sb(1A)-F(6A)	1.866(3)	C(6C)-H(6CC)	0.9800
Sb(1')-F(4A')	1.837(6)		
N(7)-Fe(1)-N(5)	176.4(2)	N(2)-Fe(1)-N(1)	89.75(19)
N(7)-Fe(1)-N(3)	92.2(2)	N(4)-Fe(1)-N(1)	90.4(2)
N(5)-Fe(1)-N(3)	89.99(19)	C(27)-O(2)-C(28)	116.4(6)
N(7)-Fe(1)-N(2)	89.8(2)	C(31)-O(4)-C(32)	116.4(6)
N(5)-Fe(1)-N(2)	87.27(19)	C(4)-N(1)-C(1)	106.3(5)
N(3)-Fe(1)-N(2)	90.4(2)	C(4)-N(1)-Fe(1)	127.2(4)
N(7)-Fe(1)-N(4)	95.1(2)	C(1)-N(1)-Fe(1)	126.4(4)
N(5)-Fe(1)-N(4)	87.8(2)	C(9)-N(2)-C(6)	106.1(5)
N(3)-Fe(1)-N(4)	89.3(2)	C(9)-N(2)-Fe(1)	126.4(4)
N(2)-Fe(1)-N(4)	175.05(19)	C(6)-N(2)-Fe(1)	127.5(4)
N(7)-Fe(1)-N(1)	90.1(2)	C(14)-N(3)-C(11)	105.7(5)
N(5)-Fe(1)-N(1)	87.71(19)	C(14)-N(3)-Fe(1)	127.9(4)
N(3)-Fe(1)-N(1)	177.69(19)	C(11)-N(3)-Fe(1)	125.8(4)

C(16)-N(4)-C(19)	106.4(5)	C(11)-C(12)-C(29)	124.6(6)
C(16)-N(4)-Fe(1)	127.5(4)	C(12)-C(13)-C(14)	106.8(6)
C(19)-N(4)-Fe(1)	126.1(4)	C(12)-C(13)-C(33)	129.0(6)
C(37)-N(5)-C(38)	106.1(5)	C(14)-C(13)-C(33)	124.1(6)
C(37)-N(5)-Fe(1)	125.6(4)	C(15)-C(14)-N(3)	124.7(6)
C(38)-N(5)-Fe(1)	128.3(4)	C(15)-C(14)-C(13)	125.2(6)
C(37)-N(6)-C(39)	108.5(5)	N(3)-C(14)-C(13)	110.1(6)
C(37)-N(6)-H(6)	128(5)	C(14)-C(15)-C(16)	125.5(6)
C(39)-N(6)-H(6)	123(5)	C(14)-C(15)-H(15)	117.2
O(5)-N(7)-Fe(1)	174.8(5)	C(16)-C(15)-H(15)	117.2
N(1)-C(1)-C(20)	124.9(6)	N(4)-C(16)-C(15)	124.8(6)
N(1)-C(1)-C(2)	110.0(5)	N(4)-C(16)-C(17)	109.8(5)
C(20)-C(1)-C(2)	124.8(6)	C(15)-C(16)-C(17)	125.4(6)
C(3)-C(2)-C(1)	106.7(5)	C(18)-C(17)-C(16)	107.1(6)
C(3)-C(2)-C(21)	126.4(6)	C(18)-C(17)-C(34)	129.1(6)
C(1)-C(2)-C(21)	126.9(6)	C(16)-C(17)-C(34)	123.8(6)
C(2)-C(3)-C(4)	106.7(5)	C(17)-C(18)-C(19)	106.5(6)
C(2)-C(3)-C(23)	129.1(5)	C(17)-C(18)-C(36)	128.7(6)
C(4)-C(3)-C(23)	124.1(6)	C(19)-C(18)-C(36)	124.8(6)
N(1)-C(4)-C(5)	126.4(5)	C(20)-C(19)-N(4)	125.8(6)
N(1)-C(4)-C(3)	110.1(5)	C(20)-C(19)-C(18)	123.9(6)
C(5)-C(4)-C(3)	123.5(6)	N(4)-C(19)-C(18)	110.2(6)
C(4)-C(5)-C(6)	123.9(5)	C(19)-C(20)-C(1)	125.3(6)
C(4)-C(5)-H(5)	118.1	C(19)-C(20)-H(20)	117.3
C(6)-C(5)-H(5)	118.1	C(1)-C(20)-H(20)	117.3
N(2)-C(6)-C(5)	125.0(5)	C(22)-C(21)-C(2)	128.0(7)
N(2)-C(6)-C(7)	109.8(5)	C(22)-C(21)-H(21)	116.0
C(5)-C(6)-C(7)	125.1(6)	C(2)-C(21)-H(21)	116.0
C(8)-C(7)-C(6)	107.2(5)	C(21)-C(22)-H(22A)	120.0
C(8)-C(7)-C(24)	128.4(5)	C(21)-C(22)-H(22B)	120.0
C(6)-C(7)-C(24)	124.4(5)	H(22A)-C(22)-H(22B)	120.0
C(7)-C(8)-C(9)	106.1(5)	C(3)-C(23)-H(23A)	109.5
C(7)-C(8)-C(25)	129.1(6)	C(3)-C(23)-H(23B)	109.5
C(9)-C(8)-C(25)	124.8(5)	H(23A)-C(23)-H(23B)	109.5
N(2)-C(9)-C(10)	125.5(6)	C(3)-C(23)-H(23C)	109.5
N(2)-C(9)-C(8)	110.6(5)	H(23A)-C(23)-H(23C)	109.5
C(10)-C(9)-C(8)	123.8(6)	H(23B)-C(23)-H(23C)	109.5
C(11)-C(10)-C(9)	125.0(6)	C(7)-C(24)-H(24A)	109.5
C(11)-C(10)-H(10)	117.5	C(7)-C(24)-H(24B)	109.5
C(9)-C(10)-H(10)	117.5	H(24A)-C(24)-H(24B)	109.5
C(10)-C(11)-N(3)	125.1(5)	C(7)-C(24)-H(24C)	109.5
C(10)-C(11)-C(12)	125.0(6)	H(24A)-C(24)-H(24C)	109.5
N(3)-C(11)-C(12)	109.7(6)	H(24B)-C(24)-H(24C)	109.5
C(13)-C(12)-C(11)	107.6(6)	C(8)-C(25)-C(26)	111.9(5)
C(13)-C(12)-C(29)	127.7(6)	C(8)-C(25)-H(25A)	109.2

C(26)-C(25)-H(25A)	109.2	C(13)-C(33)-H(33C)	109.5
C(8)-C(25)-H(25B)	109.2	H(33A)-C(33)-H(33C)	109.5
C(26)-C(25)-H(25B)	109.2	H(33B)-C(33)-H(33C)	109.5
H(25A)-C(25)-H(25B)	107.9	C(35')-C(34)-C(17)	130.1(17)
C(27)-C(26)-C(25)	112.8(6)	C(35)-C(34)-C(17)	126.7(9)
C(27)-C(26)-H(26A)	109.0	C(35)-C(34)-H(34)	116.6
C(25)-C(26)-H(26A)	109.0	C(17)-C(34)-H(34)	116.6
C(27)-C(26)-H(26B)	109.0	C(35')-C(34)-H(34')	114.9
C(25)-C(26)-H(26B)	109.0	C(17)-C(34)-H(34')	114.9
H(26A)-C(26)-H(26B)	107.8	C(34)-C(35)-H(35A)	120.0
O(1')-C(27)-O(2)	124.8(11)	C(34)-C(35)-H(35B)	120.0
O(1)-C(27)-O(2)	119.2(10)	H(35A)-C(35)-H(35B)	120.0
O(1')-C(27)-C(26)	115.2(14)	C(34)-C(35')-H(35C)	120.0
O(1)-C(27)-C(26)	126.4(8)	C(34)-C(35')-H(35D)	120.0
O(2)-C(27)-C(26)	113.2(7)	H(35C)-C(35')-H(35D)	120.0
O(2)-C(28)-H(28A)	109.5	C(18)-C(36)-H(36A)	109.5
O(2)-C(28)-H(28B)	109.5	C(18)-C(36)-H(36B)	109.5
H(28A)-C(28)-H(28B)	109.5	H(36A)-C(36)-H(36B)	109.5
O(2)-C(28)-H(28C)	109.5	C(18)-C(36)-H(36C)	109.5
H(28A)-C(28)-H(28C)	109.5	H(36A)-C(36)-H(36C)	109.5
H(28B)-C(28)-H(28C)	109.5	H(36B)-C(36)-H(36C)	109.5
C(12)-C(29)-C(30)	114.5(5)	N(5)-C(37)-N(6)	110.7(6)
C(12)-C(29)-H(29A)	108.6	N(5)-C(37)-H(37)	124.6
C(30)-C(29)-H(29A)	108.6	N(6)-C(37)-H(37)	124.6
С(12)-С(29)-Н(29В)	108.6	C(39)-C(38)-N(5)	109.1(6)
C(30)-C(29)-H(29B)	108.6	C(39)-C(38)-H(38)	125.5
H(29A)-C(29)-H(29B)	107.6	N(5)-C(38)-H(38)	125.5
C(31)-C(30)-C(29)	111.4(5)	C(38)-C(39)-N(6)	105.5(6)
С(31)-С(30)-Н(30А)	109.4	C(38)-C(39)-C(40)	132.7(7)
С(29)-С(30)-Н(30А)	109.4	N(6)-C(39)-C(40)	121.8(6)
C(31)-C(30)-H(30B)	109.4	C(39)-C(40)-H(40A)	109.5
C(29)-C(30)-H(30B)	109.4	C(39)-C(40)-H(40B)	109.5
H(30A)-C(30)-H(30B)	108.0	H(40A)-C(40)-H(40B)	109.5
O(3)-C(31)-O(4)	122.6(6)	C(39)-C(40)-H(40C)	109.5
O(3)-C(31)-C(30)	125.2(6)	H(40A)-C(40)-H(40C)	109.5
O(4)-C(31)-C(30)	112.2(5)	H(40B)-C(40)-H(40C)	109.5
O(4)-C(32)-H(32A)	109.5	F(3A)-Sb(1A)-F(4A)	90.85(18)
O(4)-C(32)-H(32B)	109.5	F(3A)-Sb(1A)-F(1A)	90.38(19)
H(32A)-C(32)-H(32B)	109.5	F(4A)-Sb(1A)-F(1A)	178.7(2)
O(4)-C(32)-H(32C)	109.5	F(3A)-Sb(1A)-F(5A)	89.71(18)
H(32A)-C(32)-H(32C)	109.5	F(4A)-Sb(1A)-F(5A)	90.18(19)
H(32B)-C(32)-H(32C)	109.5	F(1A)-Sb(1A)-F(5A)	90.36(19)
C(13)-C(33)-H(33A)	109.5	F(3A)-Sb(1A)-F(2A)	89.98(18)
C(13)-C(33)-H(33B)	109.5	F(4A)-Sb(1A)-F(2A)	89.86(19)
H(33A)-C(33)-H(33B)	109.5	F(1A)-Sb(1A)-F(2A)	89.61(18)

F(5A)-Sb(1A)-F(2A)	179.7(2)	F(1B)-Sb(1B)-F(3B)#1	89.3(4)
F(3A)-Sb(1A)-F(6A)	179.1(2)	F(2B)#1-Sb(1B)-F(3B)	91.8(5)
F(4A)-Sb(1A)-F(6A)	89.52(18)	F(2B)-Sb(1B)-F(3B)	88.2(5)
F(1A)-Sb(1A)-F(6A)	89.25(17)	F(1B)#1-Sb(1B)-F(3B)	89.3(4)
F(5A)-Sb(1A)-F(6A)	89.49(18)	F(1B)- $Sb(1B)$ - $F(3B)$	90.7(4)
F(2A)-Sb(1A)-F(6A)	90.82(18)	F(3B)#1-Sb(1B)-F(3B)	180.0
F(4A')-Sb(1')-F(6A')	91.7(4)	C(5C)-N(1C)-C(2C)	107.5(16)
F(4A')-Sb(1')-F(5A')	91.5(4)	C(5C)-N(1C)-H(1C)	126.3
F(6A')-Sb(1')-F(5A')	91.2(4)	C(2C)-N(1C)-H(1C)	126.3
F(4A')-Sb(1')-F(2A')	90.0(2)	N(3C)-C(2C)-N(1C)	111.8(15)
F(6A')-Sb(1')-F(2A')	90.0(2)	N(3C)-C(2C)-H(2C)	124.1
F(5A')-Sb(1')-F(2A')	178.1(5)	N(1C)-C(2C)-H(2C)	124.1
F(4A')-Sb(1')-F(3A')	90.0(2)	C(2C)-N(3C)-C(4C)	103.7(17)
F(6A')-Sb(1')-F(3A')	177.9(5)	C(2C)-N(3C)-H(3C)	128.1
F(5A')-Sb(1')-F(3A')	90.0(2)	C(4C)-N(3C)-H(3C)	128.1
F(2A')-Sb(1')-F(3A')	88.7(4)	N(3C)-C(4C)-C(5C)	113(2)
F(4A')-Sb(1')-F(1A')	178.0(5)	N(3C)-C(4C)-H(4C)	123.6
F(6A')-Sb(1')-F(1A')	89.9(2)	C(5C)-C(4C)-H(4C)	123.6
F(5A')-Sb(1')-F(1A')	89.8(2)	N(1C)-C(5C)-C(4C)	103.6(16)
F(2A')-Sb(1')-F(1A')	88.7(4)	N(1C)-C(5C)-C(6C)	130.8(18)
F(3A')-Sb(1')-F(1A')	88.3(4)	C(4C)-C(5C)-C(6C)	125.6(18)
F(1B')#1-Sb(1B)-F(1B')	180.0	C(5C)-C(6C)-H(6CA)	109.5
F(2B)#1-Sb(1B)-F(2B)	180.0(7)	C(5C)-C(6C)-H(6CB)	109.5
F(1B')#1-Sb(1B)-F(2B')#1	91.6(6)	H(6CA)-C(6C)-H(6CB)	109.5
F(1B')-Sb(1B)-F(2B')#1	88.4(6)	C(5C)-C(6C)-H(6CC)	109.5
F(1B')#1-Sb(1B)-F(2B')	88.4(6)	H(6CA)-C(6C)-H(6CC)	109.5
F(1B')-Sb(1B)-F(2B')	91.6(6)	H(6CB)-C(6C)-H(6CC)	109.5
F(2B')#1-Sb(1B)-F(2B')	180.0		
F(1B')#1-Sb(1B)-F(3B')	88.6(6)		
F(1B')-Sb(1B)-F(3B')	91.4(6)		
F(2B')#1-Sb(1B)-F(3B')	89.7(5)	Symmetry transformations u	used to
F(2B')-Sb(1B)-F(3B')	90.3(5)	generate equivalent atoms:	
F(1B')#1-Sb(1B)-F(3B')#1	91.4(6)	#1 -x+2, -y+1, -z+2	
F(1B')-Sb(1B)-F(3B')#1	88.6(6)		
F(2B')#1-Sb(1B)-F(3B')#1	90.3(5)		
F(2B')-Sb(1B)-F(3B')#1	89.7(5)		
F(3B')-Sb(1B)-F(3B')#1	180.0(12)		
F(2B)#1-Sb(1B)-F(1B)#1	90.6(4)		
F(2B)-Sb(1B)-F(1B)#1	89.4(4)		
F(2B)#1-Sb(1B)-F(1B)	89.4(4)		
F(2B)-Sb(1B)-F(1B)	90.6(4)		
F(1B)#1-Sb(1B)-F(1B)	180.0(6)		
F(2B)#1-Sb(1B)-F(3B)#1	88.2(5)		
F(2B)-Sb(1B)-F(3B)#1	91.8(5)		
F(1B)#1-Sb(1B)-F(3B)#1	90.7(4)		
	(-)		

Figure S4. Molecular structure of [(OEP)Fe(NO)]OTf

Experimental for X-ray structural determination of [(OEP)Fe(NO)]OTf

The selected crystal was a 4-component twin. The intensity data were effectively detwinned by the integration and scaling programs. The displacement ellipsoids were drawn at the 50% probability level.

A red block-shaped crystal of dimensions 0.500 x 0.240 x 0.180 mm was selected for structural analysis. Intensity data for this compound were collected using a diffractometer with a Bruker APEX ccd area detector (1) and graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The sample was cooled to 100(2) K. Cell parameters were determined from a non-linear least squares fit of 9982 peaks in the range 2.26 < θ < 27.58°. A total of 91,295 data were measured in the range 1.570 < θ < 27.753° using ϕ and ω oscillation frames. The data were corrected for absorption by the empirical method (2) giving minimum and maximum transmission factors of 0.714 and 0.881. The data were merged to form a set of 9460 independent data with R(int) = 0.0571 and a coverage of 97.9 %.

The triclinic space group $P\overline{1}$ was determined by statistical tests and verified by

subsequent refinement. The structure was solved by direct methods and refined by fullmatrix least-squares methods on F^2 (3). The positions of hydrogens were initially determined by geometry and were refined using a riding model. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 (1.5 for methyl) times the isotropic equivalent displacement parameters of the bonded atoms. A total of 514 parameters were refined against 9460 data to give wR(F^2) = 0.0902 and S = 1.000 for weights of w = 1/[σ^2 (F^2) + (0.0360 P)²], where P = [$F_0^2 + 2F_c^2$] / 3. The final R(F) was 0.0358 for the 7049 observed, [$F > 4\sigma(F)$], data. The largest shift/s.u. was 0.001 in the final refinement cycle. The final difference map had maxima and minima of 0.587 and -0.425 e/Å³, respectively.

Acknowledgment

The authors thank the National Science Foundation (grant CHE-0130835) and the University of Oklahoma for funds to purchase of the X-ray instrument and computers. This structure was determined by Douglas R. Powell.

References

- (1) (a) Data Collection: APEX2 (2007) Bruker AXS Inc., Madison, Wisconsin, USA. (b) Data Reduction: SAINT (2007) Bruker AXS Inc., Madison, Wisconsin, USA.
- (2) SADABS (2002) Bruker AXS Inc., Madison, Wisconsin, USA.
- (3) (a) G. M. Sheldrick. *Acta Cryst.* **2015**, *A71*, 3-8. (b) G. M. Sheldrick. *Acta Cryst.* **2015**., *C71*, 3-8.

Deposition of the crystal structure with the CCDC

CCDC 1484725 contains the supplementary crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/conts/retrieving.html

Table S8. Crystal data and structure refinement for [(OEP)Fe(NO)]OTf.2(CH₂Cl₂).

Empirical formula	$(C_{36} H_{44} Fe N_5 O)^+ (C F_3 O_3 S)^- 2(C H_2 Cl_2)$		
	C ₃₉ H ₄₈ Cl ₄ F ₃ Fe N ₅	O ₄ S	
Formula weight	937.53		
Crystal system	triclinic		
Space group	$P\overline{1}$		
Unit cell dimensions	a = 12.424(2) Å	$\alpha = 100.515(3)^{\circ}$	
	b = 13.832(3) Å	β=112.954(3)°	
	c = 15.083(3) Å	γ= 109.155(3)°	
Volume	2106.1(7) Å ³		
Z, Z'	2, 1		
Density (calculated)	1.478 Mg/m ³		
Wavelength	0.71073 Å		
Temperature	100(2) K		
<i>F</i> (000)	972		
Absorption coefficient	0.721 mm ⁻¹		
Absorption correction	semi-empirical from	equivalents	
Max. and min. transmission	0.881 and 0.714		
Theta range for data collection	1.570 to 27.753°		
Reflections collected	9460		
Independent reflections	9460 [R(int) = ?]		
Data / restraints / parameters	9460 / 0 / 514		
$wR(F^2 \text{ all data})$	wR2 = 0.0902		
R(F obsd data)	R1 = 0.0358		
Goodness-of-fit on F^2	1.000		
Observed data $[I > 2s(I)]$	7049		
Largest and mean shift / s.u.	0.001 and 0.000		
Largest diff. peak and hole	0.587 and -0.425 e/Å	3	

 $wR2 = \{ \sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}$ R1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|

Fe(1)-N(5)	1.6371(15)	C(18)-C(19)	1.446(2)
Fe(1)-N(2)	1.9864(15)	C(18)-C(35)	1.496(3)
Fe(1)-N(4)	1.9899(15)	C(19)-C(20)	1.376(2)
Fe(1)-N(1)	1.9910(15)	C(20)-H(20)	0.9500
Fe(1)-N(3)	1.9998(15)	C(21)-C(22)	1.527(3)
O(1)-N(5)	1.1473(19)	C(21)-H(21A)	0.9900
N(1)-C(1)	1.387(2)	C(21)-H(21B)	0.9900
N(1)-C(4)	1.387(2)	C(22)-H(22A)	0.9800
N(2)-C(6)	1.384(2)	C(22)-H(22B)	0.9800
N(2)-C(9)	1.386(2)	C(22)-H(22C)	0.9800
N(3)-C(14)	1.385(2)	C(23)-C(24)	1.531(3)
N(3)-C(11)	1.390(2)	C(23)-H(23A)	0.9900
N(4)-C(16)	1.382(2)	C(23)-H(23B)	0.9900
N(4)-C(19)	1.383(2)	C(24)-H(24A)	0.9800
C(1)-C(20)	1.377(3)	C(24)-H(24B)	0.9800
C(1)-C(2)	1.442(3)	C(24)-H(24C)	0.9800
C(2)-C(3)	1.357(3)	C(25)-C(26)	1.525(3)
C(2)-C(21)	1.501(3)	C(25)-H(25A)	0.9900
C(3)-C(4)	1.439(3)	C(25)-H(25B)	0.9900
C(3)-C(23)	1.505(2)	C(26)-H(26A)	0.9800
C(4)-C(5)	1.375(3)	C(26)-H(26B)	0.9800
C(5)-C(6)	1.379(3)	C(26)-H(26C)	0.9800
C(5)-H(5)	0.9500	C(27)-C(28)	1.526(3)
C(6)-C(7)	1.437(3)	C(27)-H(27A)	0.9900
C(7)-C(8)	1.364(3)	C(27)-H(27B)	0.9900
C(7)-C(25)	1.493(3)	C(28)-H(28A)	0.9800
C(8)-C(9)	1.440(2)	C(28)-H(28B)	0.9800
C(8)-C(27)	1.494(2)	C(28)-H(28C)	0.9800
C(9)-C(10)	1.373(2)	C(29)-C(30)	1.532(3)
C(10)-C(11)	1.376(2)	C(29)-H(29A)	0.9900
C(10)-H(10)	0.9500	C(29)-H(29B)	0.9900
C(11)-C(12)	1.437(2)	C(30)-H(30A)	0.9800
C(12)-C(13)	1.352(3)	C(30)-H(30B)	0.9800
C(12)-C(29)	1.500(2)	C(30)-H(30C)	0.9800
C(13)-C(14)	1.439(2)	C(31)-C(32)	1.526(2)
C(13)-C(31)	1.501(2)	C(31)-H(31A)	0.9900
C(14)-C(15)	1.365(3)	C(31)-H(31B)	0.9900
C(15)-C(16)	1.377(2)	C(32)-H(32A)	0.9800
C(15)-H(15)	0.9500	C(32)-H(32B)	0.9800
C(16)-C(17)	1.435(3)	C(32)-H(32C)	0.9800
C(17)-C(18)	1.358(3)	C(33)-C(34)	1.520(3)
C(17)-C(33)	1.500(2)	C(33)-H(33A)	0.9900

Table S9. Bond lengths [Å] and angles $[\circ]$ for $[(OEP)Fe(NO)]OTf.2(CH_2Cl_2)$.

C(33)-H(33B)	0.9900	S(1A)-C(1A)	1.816(2)
C(34)-H(34A)	0.9800	F(1A)-C(1A)	1.326(2)
C(34)-H(34B)	0.9800	F(2A)-C(1A)	1.330(2)
C(34)-H(34C)	0.9800	F(3A)-C(1A)	1.325(2)
C(35)-C(36)	1.526(3)	Cl(1B)-C(2B)	1.765(2)
C(35)-H(35A)	0.9900	C(2B)-Cl(3B)	1.756(2)
C(35)-H(35B)	0.9900	C(2B)-H(2B1)	0.9900
C(36)-H(36A)	0.9800	C(2B)-H(2B2)	0.9900
C(36)-H(36B)	0.9800	Cl(4B)-C(5B)	1.768(2)
C(36)-H(36C)	0.9800	C(5B)-Cl(6B)	1.765(2)
S(1A)-O(2A)	1.4206(15)	C(5B)-H(5B1)	0.9900
S(1A)-O(1A)	1.4223(15)	C(5B)-H(5B2)	0.9900
S(1A)-O(3A)	1.4229(15)	- (-) (-)	
N(5)-Fe(1)-N(2)	98 61(7)	C(4)- $C(3)$ - $C(23)$	124 27(16)
N(5)-Fe(1)-N(4)	99.50(7)	C(5)-C(4)-N(1)	124.27(10) 123 96(17)
N(2)-Fe(1)-N(4)	161 89(6)	C(5) - C(4) - C(3)	123.90(17) 124.59(17)
N(5)-Fe(1)-N(1)	97.91(7)	N(1)-C(4)-C(3)	124.55(17) 111 45(15)
N(2)-Fe(1)-N(1)	88.92(6)	C(4)-C(5)-C(6)	125 61(17)
N(2)- $Fe(1)$ - $N(1)$	88 25(6)	C(4)-C(5)-H(5)	117.2
N(4) Fe(1) N(1) N(5)-Fe(1)-N(3)	101 14(7)	C(6)-C(5)-H(5)	117.2
N(2)-Fe(1)-N(3)	88 14(6)	C(5)-C(6)-N(2)	124 33(16)
N(4)-Fe(1)-N(3)	88 72(6)	C(5) - C(6) - C(7)	124.03(10) 124.08(17)
N(1)-Fe(1)-N(3)	160.95(6)	N(2)-C(6)-C(7)	124.00(17) 111.55(16)
C(1)-N(1)-C(4)	103.69(14)	C(8)-C(7)-C(6)	10644(16)
C(1)-N(1)-E(1)	105.07(14) 127.77(12)	C(8)-C(7)-C(25)	128 13(17)
C(4)-N(1)-Fe(1)	127.77(12) 127.44(12)	C(6)-C(7)-C(25)	125.19(17) 125.39(17)
C(4) N(2) - C(9)	127.44(12) 104 15(14)	C(7)-C(8)-C(9)	106 69(16)
C(6)-N(2)-Ee(1)	104.13(14) 126 81(12)	C(7) - C(8) - C(27)	100.09(10) 128 44(17)
C(9)-N(2)-Fe(1)	120.01(12) 127.36(12)	C(9)-C(8)-C(27)	120.44(17) 124.84(16)
C(14)-N(3)-C(11)	10372(14)	C(10)-C(9)-N(2)	124.04(10)
C(14)-N(3)-Ee(1)	105.72(14) 126.57(12)	C(10)-C(9)-C(8)	124.37(10) 124.26(17)
C(11)-N(3)-Fe(1)	120.37(12) 127.75(12)	N(2)-C(9)-C(8)	124.20(17) 111 17(16)
C(16) - N(4) - C(19)	127.73(12) 104 13(14)	C(9)-C(10)-C(11)	125 57(17)
C(16) - N(4) - Fe(1)	104.19(14) 126 99(12)	C(9) - C(10) - H(10)	117.2
C(10)-N(4)-Fe(1)	120.99(12) 127 68(12)	C(11)-C(10)-H(10)	117.2
O(1)-N(5)-Fe(1)	176 15(15)	C(10)-C(11)-N(3)	123 41(16)
C(20)-C(1)-N(1)	170.13(13) 124.08(17)	C(10)-C(11)-C(12)	125.41(10) 125.17(17)
C(20)-C(1)-R(1)	124.00(17) 124.33(17)	N(3)-C(11)-C(12)	123.17(17) 111/ $12(15)$
N(1)-C(1)-C(2)	124.55(17) 111.56(15)	C(13)-C(12)-C(11)	106.64(16)
C(3)-C(2)-C(1)	106/3(16)	C(13)-C(12)-C(11)	100.04(10) 127 A3(17)
$C(3)_{-}C(2)_{-}C(21)$	170 16(17)	C(12) - C(12) - C(22)	127.45(17)
$C(1)_{-}C(2)_{-}C(21)$	127.10(17) $174 \ 11(17)$	C(12)-C(12)-C(14)	125.91(10) 106.03(16)
C(1) - C(2) - C(21) C(2) - C(3) - C(4)	106 83(16)	C(12)-C(13)-C(14) C(12)-C(13)-C(21)	178 68(17)
C(2)-C(3)-C(4)	100.03(10) 128.80(17)	C(12) - C(13) - C(31) C(14) - C(12) - C(21)	120.00(17) 124.24(16)
C(2) - C(3) - C(23)	120.07(1/)	(14) - ((15) - ((51))	124.34(10)

C(15)-C(14)-N(3)	124.45(17)	C(7)-C(25)-C(26)	113.35(16)
C(15)-C(14)-C(13)	124.26(17)	C(7)-C(25)-H(25A)	108.9
N(3)-C(14)-C(13)	111.28(15)	C(26)-C(25)-H(25A)	108.9
C(14)-C(15)-C(16)	125.54(17)	C(7)-C(25)-H(25B)	108.9
C(14)-C(15)-H(15)	117.2	C(26)-C(25)-H(25B)	108.9
C(16)-C(15)-H(15)	117.2	H(25A)-C(25)-H(25B)	107.7
C(15)-C(16)-N(4)	124.56(16)	C(25)-C(26)-H(26A)	109.5
C(15)-C(16)-C(17)	123.99(17)	C(25)-C(26)-H(26B)	109.5
N(4)-C(16)-C(17)	111.45(16)	H(26A)-C(26)-H(26B)	109.5
C(18)-C(17)-C(16)	106.88(16)	C(25)-C(26)-H(26C)	109.5
C(18)-C(17)-C(33)	129.06(17)	H(26A)-C(26)-H(26C)	109.5
C(16)-C(17)-C(33)	124.05(17)	H(26B)-C(26)-H(26C)	109.5
C(17)-C(18)-C(19)	106.32(16)	C(8)-C(27)-C(28)	112.44(16)
C(17)-C(18)-C(35)	128.56(17)	C(8)-C(27)-H(27A)	109.1
C(19)-C(18)-C(35)	125.11(17)	C(28)-C(27)-H(27A)	109.1
C(20)-C(19)-N(4)	124.36(16)	C(8)-C(27)-H(27B)	109.1
C(20)-C(19)-C(18)	124.39(17)	C(28)-C(27)-H(27B)	109.1
N(4)-C(19)-C(18)	111.21(16)	H(27A)-C(27)-H(27B)	107.8
C(19)-C(20)-C(1)	125.15(17)	C(27)-C(28)-H(28A)	109.5
С(19)-С(20)-Н(20)	117.4	C(27)-C(28)-H(28B)	109.5
C(1)-C(20)-H(20)	117.4	H(28A)-C(28)-H(28B)	109.5
C(2)-C(21)-C(22)	114.18(16)	C(27)-C(28)-H(28C)	109.5
C(2)-C(21)-H(21A)	108.7	H(28A)-C(28)-H(28C)	109.5
C(22)-C(21)-H(21A)	108.7	H(28B)-C(28)-H(28C)	109.5
C(2)-C(21)-H(21B)	108.7	C(12)-C(29)-C(30)	113.26(16)
C(22)-C(21)-H(21B)	108.7	C(12)-C(29)-H(29A)	108.9
H(21A)-C(21)-H(21B)	107.6	C(30)-C(29)-H(29A)	108.9
C(21)-C(22)-H(22A)	109.5	C(12)-C(29)-H(29B)	108.9
C(21)-C(22)-H(22B)	109.5	C(30)-C(29)-H(29B)	108.9
H(22A)-C(22)-H(22B)	109.5	H(29A)-C(29)-H(29B)	107.7
C(21)-C(22)-H(22C)	109.5	C(29)-C(30)-H(30A)	109.5
H(22A)-C(22)-H(22C)	109.5	C(29)-C(30)-H(30B)	109.5
H(22B)-C(22)-H(22C)	109.5	H(30A)-C(30)-H(30B)	109.5
C(3)-C(23)-C(24)	114.04(15)	C(29)-C(30)-H(30C)	109.5
C(3)-C(23)-H(23A)	108.7	H(30A)-C(30)-H(30C)	109.5
C(24)-C(23)-H(23A)	108.7	H(30B)-C(30)-H(30C)	109.5
C(3)-C(23)-H(23B)	108.7	C(13)-C(31)-C(32)	113.00(16)
C(24)-C(23)-H(23B)	108.7	C(13)-C(31)-H(31A)	109.0
H(23A)-C(23)-H(23B)	107.6	C(32)-C(31)-H(31A)	109.0
C(23)-C(24)-H(24A)	109.5	C(13)-C(31)-H(31B)	109.0
C(23)-C(24)-H(24B)	109.5	C(32)-C(31)-H(31B)	109.0
H(24A)-C(24)-H(24B)	109.5	H(31A)-C(31)-H(31B)	107.8
C(23)-C(24)-H(24C)	109.5	C(31)-C(32)-H(32A)	109.5
H(24A)-C(24)-H(24C)	109.5	C(31)-C(32)-H(32B)	109.5
H(24B)-C(24)-H(24C)	109.5	H(32A)-C(32)-H(32B)	109.5

C(31)-C(32)-H(32C)	109.5
H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5
C(17)-C(33)-C(34)	112.62(16)
С(17)-С(33)-Н(33А)	109.1
C(34)-C(33)-H(33A)	109.1
С(17)-С(33)-Н(33В)	109.1
С(34)-С(33)-Н(33В)	109.1
H(33A)-C(33)-H(33B)	107.8
C(33)-C(34)-H(34A)	109.5
C(33)-C(34)-H(34B)	109.5
H(34A)-C(34)-H(34B)	109.5
C(33)-C(34)-H(34C)	109.5
H(34A)-C(34)-H(34C)	109.5
H(34B)-C(34)-H(34C)	109.5
C(18)-C(35)-C(36)	114.11(15)
C(18)-C(35)-H(35A)	108.7
C(36)-C(35)-H(35A)	108.7
C(18)-C(35)-H(35B)	108.7
C(36)-C(35)-H(35B)	108.7
H(35A)-C(35)-H(35B)	107.6
C(35)-C(36)-H(36A)	109.5
С(35)-С(36)-Н(36В)	109.5
H(36A)-C(36)-H(36B)	109.5
C(35)-C(36)-H(36C)	109.5
H(36A)-C(36)-H(36C)	109.5
H(36B)-C(36)-H(36C)	109.5
O(2A)-S(1A)-O(1A)	115.57(11)
O(2A)-S(1A)-O(3A)	114.69(11)
O(1A)-S(1A)-O(3A)	114.94(11)
O(2A)-S(1A)-C(1A)	103.60(10)
O(1A)-S(1A)-C(1A)	102.19(9)
O(3A)-S(1A)-C(1A)	103.33(10)
F(3A)-C(1A)-F(1A)	108.02(19)
F(3A)-C(1A)-F(2A)	106.74(16)
F(1A)-C(1A)-F(2A)	106.09(18)
F(3A)-C(1A)-S(1A)	111.49(15)
F(1A)-C(1A)-S(1A)	112.06(14)
F(2A)-C(1A)-S(1A)	112.12(15)
Cl(3B)-C(2B)-Cl(1B)	111.51(12)
Cl(3B)-C(2B)-H(2B1)	109.3
Cl(1B)-C(2B)-H(2B1)	109.3
Cl(3B)-C(2B)-H(2B2)	109.3
Cl(1B)-C(2B)-H(2B2)	109.3
H(2B1)-C(2B)-H(2B2)	108.0

Cl(6B)-C(5B)-Cl(4B)	110.83(11)
Cl(6B)-C(5B)-H(5B1)	109.5
Cl(4B)-C(5B)-H(5B1)	109.5
Cl(6B)-C(5B)-H(5B2)	109.5
Cl(4B)-C(5B)-H(5B2)	109.5
H(5B1)-C(5B)-H(5B2)	108.1