Electronic Supplementary Material (ESI) for Dalton Transactions.
This journal is © The Royal Society of Chemistry 2016

Atom	Wickoff position	x	y	z	Biso $\left(\AA^{2}\right)$	Occ.
Sr	$1 a$	0.00	0.00	0.00	$0.63(4)$	1
$\mathrm{Co} / \mathrm{Fe}$	$1 b$	0.50	0.50	0.50	$0.69(6)$	1
O	$3 c$	0.50	0.00	0.50	0.5	2.63

Table S1. Structural parameters obtained by the Rietveld's refinement of the x-ray powder diffraction data using the cubic $\mathrm{Pm}-3 \mathrm{~m}$ space group. Occupation factors were fixed to the structural formula values. Fe and Co cations could not be distinguished because of their similar scattering factors.

Figure S-1. Experimental (red dot) and calculated (thin solid line) neutron diffraction patterns at RT ($\mathrm{D} 2 \mathrm{~B}, \mathrm{ILL} \lambda=1.594 \AA ̊$) for $\mathrm{SrFe}_{0.25} \mathrm{Co}_{0.75} \mathrm{O}_{2.63}$ material on a particular angular window. The vertical bars indicate calculated Bragg peak positions for nuclear structures for
(a) Model based on $14 / m, a=b=a_{p} \sqrt{2}$ and $c=2 a_{p}$
(b) Model based on $\mathrm{P} 42 / \mathrm{mnm}$, $\mathrm{a}=\mathrm{b}=2 \mathrm{a}_{\mathrm{p}} \sqrt{2}$ and c $=4 \mathrm{a}_{\mathrm{p}}$
(c) Model based on P4/mmm, a = b=and c=2 a_{p}
(d) Model based on $14 / \mathrm{mmm}, \mathrm{a}=\mathrm{b}=2 \mathrm{a}_{\mathrm{p}}$ and $\mathrm{c}=4 \mathrm{a}_{\mathrm{p}}$

Table S2. The $\mathrm{P} 4 / \mathrm{mmm}$ tetragonal SG is characteristic of the " $\mathrm{Sr}_{2} \mathrm{~B}_{2} \mathrm{O}_{5.5}$ " oxygen-vacancy ordering model.

Unit cell with lattice parameters $a=3.86034(2) \AA \approx a_{p}, c=7.7318(1) \AA \approx 2 a_{p}$ (a_{p} : lattice parameter of the cubic perovskite subcell). The agreement factors are $\chi^{2}=3.36, R_{w p}(\%)=7.01, R_{p}(\%)=5.43, R_{\text {bragg }}(\%)=11.7$ and $\mathrm{R}_{\mathrm{f}}(\%)=12.5$. Atomic positions, thermal factors and occupancies obtained by Rietveld refinement of the neutron powder diffractogram using the tetragonal $P 4 / \mathrm{mmm}$ space group and referring to the $\mathrm{Sr}_{2} \mathrm{~B}_{2} \mathrm{O}_{5.5}$ model.

Atom	Wickoff position	x	y	z	Biso (A^{2})	Occ.
Sr1	2g	0.0000	0.0000	$0.2610(3)$	$1.00(3)$	1.00
Co1/Fe1	1 c	0.5	0.5	0.0000	$0.6(1)$	$0.740(5) / 0.260(5)$
Co2/Fe2	1 d	0.5	0.5	0.5	$0.7(1)$	$0.760(5) / 0.240(5)$
O1	2 h	0.5	0.5	$0.2352(6)$	$2.6(1)$	$0.90(1)$
O2	2 f	0.0000	0.5	0.0000	$2.3(3)$	$0.72(1)$
O3	2 e	0.5	0.0000	0.5	$0.81(4)$	1.0

Figure S-2. displays squematic representations of planes of the reciprocal lattice along different zone axis and different orientations of a crystal with a $2 \sqrt{ } 2 a_{p} \times 2 \sqrt{ } 2 a_{p} \times 4 a_{p}$ unit cell.

The pattern represented in Fig. S2c (similar to the SAED pattern in Fig. 3a) is a combination of the patterns represented in Fig. S2a and S2b.The pattern in Fig. S2f is a combination of the patterns in Fig. S2d and S2e. The pattern represented in Fig. S2g (similar to the SAED pattern in Fig. 3b) is a combination of the patterns represented in Fig. 2c and f. According to these representations, the FFT in Fig. 3 (similar to the SAED pattern in Fig. 2b) corresponds to Fig. S2g, which indicates that the crystal is formed by four different domains with $2 \sqrt{ } 2 a_{p} \times 2 \sqrt{ } 2 a_{p} \times 4 a_{p}$ unit cell perpendicularly oriented. Fig. 4 shows a single domain of a crystal along the $[100]_{\mathrm{p}}$ zone axis and the FFT corresponds to Fig. S2d and the FFT in Fig. 5 (similar to the SAED pattern in Fig. 2a) correspond to the representation in Fig. S2c.

