Electronic Supplementary Information

A novel Ag(I)-calix[4]arene coordination polymer for sensitive detection and efficient photodegradation of nitrobenzene in aqueous solution

Lei-Lei Liu,*a Jing Chen,^a Cai-Xia Yu,^a Wen-Xing Lv,^a Hui-Ying Yu,^a Xiao-Qing Cui^a and Lin Liu*a

^a College of Chemistry and Chemical Engineering, Henan Key Laboratory of New Optoelectronic

Functional Materials, Anyang Normal University, Anyang 455000, P. R. China

Figure S1. SEM image of the 1-modified electrode.

Figure S2. TG curve coupled with IR spectra of 1.

Figure S3. The PXRD patterns of simulated single crystal data 1, as-synthesized 1 and as-0.1 NaOH 48 synthesized immersing Μ solution for 1 after in h. S2

Figure S4. DPV curves obtained at 1/GCE in 0.1 M NaOH solution containing 1 mM NB, 4-NP,

Figure S5. UV–vis adsorption spectra of 1 in the solid state at ambient temperature.

1.

Figure S7. The UV–vis adsorption spectra of the initial NB solution and the NB solution after stirring with the catalyst about 140 min.

Figure S8. The GC chromatogram of the NB solution (5 \times 10⁻⁴ M) during the decomposition reaction under the UV irradiation in the presence of 1.

Figure S9. The pseudo-zero-order plot for the photodegradation of NB in the presence of **1** under UV light irradiation. The square dots and the red line represent the experimental data and the fitted least-square line, respectively.

(a)

Figure S10. (a) SEM image of as-synthesized catalyst 1. (b) SEM image of catalyst 1 after the

photodegradation

NB.

Table S1. Summary of Crystallographic Data for 1.

Empirical Formula	$C_{26}H_{22}AgN_3O_5$
Formula Weight	564.34
Crystal System	monoclinic
Space Group	C2/c
<i>a</i> (Å)	27.7874(10)
<i>b</i> (Å)	11.7457(7)
<i>c</i> (Å)	17.5147(9)
α (°)	90
β (°)	129.073(2)
γ (°)	90
$V(\text{\AA}^3)$	4438.0(4)
Ζ	8
<i>T</i> (K)	293(2)
$\rho_{\rm calc} ({\rm g/cm^3})$	1.689
F(000)	2288
μ (MoK α , mm ⁻¹)	0.954
Total reflections	11329
Unique reflections	2903 ($R_{\rm int} = 0.0422$)
No. of observations	2735
No. of parameters	316
R_1^a	0.1167
wR_2^b	0.2873
GOF^c	1.053
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} . \ {}^{b}wR_{2} = \{\Sigma^{a}\}$	$w(F_o^2 - F_c^2)^2 / \Sigma w(F_o^2)^2 \}^{1/2}$. ^c GOF = { $\Sigma w(F_o^2 - F_c^2)^2 / (n-p)$ } ^{1/2} , where

n = number of reflections and p = total numbers of parameters refined.

Electrode	Method ^a	Linear range (µM)	Sensitivity ($\mu A \ mM^{-1} \ cm^{-2}$)	LOD ^b (µM)	References
SiO ₂ /AuNPs/GCE	CV	0.1-25	1130	0.1	1
OMC/DDAB/GCE	LSV	20-2900	_	10	2
OMCN/GCE	CV	0.5-1000	7500	0.18	3
ATP-Ag/GCE	LSV	3-30	_	1.1	4
TMPP/N-OMC/GCE	DPV	0.528-132	_	0.38	5
BiF/CPE	SWV	1-100	3210	0.83	6
HMDE	LSV	14.7-1000	_	5	7
GCE/Au-MOF-5	CV	20-500/500-6000	430	15.3	8
RGO-AgNPs/GCE	DPV	0.5-900	836	0.261	9
1/GCE	DPV	1-100/100-2450	2170/1298	0.62	this work

 Table S2. Comparison of the performance of the as-prepared sensor 1 with that of other sensors

 for the detection of NB.

^{*a*} CV = cyclic voltammetry; LSV = linear sweep voltammetry; DPV = differential pulse voltammetry; SWV = square wave voltammetry. ^{*b*} LOD = low detection limit.

References

- 1 S. Singh, P. Devi, D. Singh, D. V. S. Jain and M. L. Singla, Gold Bull., 2012, 45,75-81.
- 2 B. Qi, F. Y. Lin, J. Bai, L. Liu and L. P. Guo, Mater. Lett., 2008, 62, 3670-3672.
- 3 Y. F. Zhang, X. J. Bo, A. Nsabimana, C. Luhana, G. Wang, H. Wang, M. Li and L. P. Guo, *Biosens. Bioelectron.*, 2014, 53, 250–256.
- 4 F. Liang, B. Z. Liu, Y. H. Deng, S. G. Yang and C. Sun, *Microchim. Acta*, 2011, 174, 407–412.
- 5 Z. H. Xue, H. Lian, C. X. Hu, Y. J. Feng, F. Zhang, X. H. Liu and X. Q. Lu, Aust. J. Chem., 2014, 67, 796–804.
- 6 L. Q. Luo, X. Wang, Y.P. Ding, Q. X. Li, J. B. Jia and D. M. Deng, *Anal. Methods*, 2010, 2, 1095–1100.

- 7 S. X. Liang, H. K. Zhang and D. Lu, *Environ. Monit. Assess.*, 2007, **129**, 331–337.
- 8 D. K. Yadav, V Ganesan, P. K. Sonkar, R. Gupta and P. K. Rastogi, *Electrochim. Acta*, 2016, 200, 276–282.
- 9 C. Karuppiah, K. Muthupandi, S. M. Chen, M. A. Ali, S. Palanisamy, A. Rajan, P. Prakash, F. M. A. Al-Hemaidc and B. S. Lou, *RSC Adv.*, 2015, 5, 31139–31146.