"A Structural Study of Alkaline Earth Metal Complexes with Hybrid Disila-Crown Ethers"

Fabian Dankert,^a Kirsten Reuter,^a Carsten Donsbach,^a C. v. Hänisch^{*a}

 Fachbereich Chemie and Wissenschaftliches Zentrum f
ür Materialwissenschaften (WZMW) Philipps-Universit
ät Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany, E-Mail: haenisch@chemie.uni-marburg.de

Supplementary Information

Table of contents

1. NM	IR spectra	2
1.1	Compound 3	2
1.2	Compound 4	4
1.3	Compound 5	6
1.4	Compound 6	7
1.5	Compound 7	9
1.6	Compound 8	11
2. Ma	ss Spectra	13
2.1	ESI-MS spectrum of [Ca([18]crown-6)OTf ₂]	13
3. XYZ	data of quantum chemical calculations	14
3.1	XYZ data and optimized structure of [15]crown-5	14
3.2	XYZ data and optimized structure of [Mg([15]crown-5)Br ₂]	15
3.3	XYZ data and optimized structure of 1,2-disila[15]crown-5 (1)	16
3.4	XYZ data and optimized structure of $[Mg(1,2-disila[15]crown-5)Br_2]$ (3)	17
Reference	ces	18

1. NMR spectra

General: NMR spectra were recorded on a Bruker AV III 500 MHz and a Bruker AV III HD 300 MHz. Coupling constants *J* are reported in Hertz (Hz) and the chemical shifts (δ) expressed in parts per million (ppm) relative to CCl₃F (¹⁹F) or SiMe₄ (¹H, ¹³C, ²⁹Si). Given spectra represent compounds **3** to **8** after workup and were visualized with MestReNova.^[1]

1.1 Compound 3

¹H NMR of compound **3** in CD_2Cl_2 .

 $^{13}\text{C}\{^1\text{H}\}\,$ NMR of compound $\boldsymbol{3}$ in $\text{CD}_2\text{Cl}_2.$

-17.96

 $^{29}\text{Si}\{^1\text{H}\}$ NMR of compound 3 CD_2Cl_2.

1.2 Compound 4

 $^{13}\text{C}\{^1\text{H}\}~\text{NMR}$ of compound 4 in $\text{CD}_2\text{Cl}_2.$

1.3 Compound 5

75 70 65 60 55 50 45 40 35 30 25 20 15 10

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR of compound 5 CD_2Cl_2.

5

0

-18.14

1.4 Compound 6

5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 ¹H NMR of compound **6** in CD₂Cl₂.

-61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81

 $^{^{19}\}mathsf{F}\,$ NMR of compound $\boldsymbol{6}$ in $\mathsf{CD}_2\mathsf{Cl}_2.$

-17.59

1.5 Compound 7

-10.95

appletes the set of th

100 95

 $^{29}\text{Si}\{^1\text{H}\}$ NMR of compound 7 CD₃CN.

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR of compound $\boldsymbol{8}$ CD_2Cl_2.

---78.69

 $^{29}\text{Si}\{^1\text{H}\}$ NMR of compound $\boldsymbol{8}$ CD_2Cl_2.

2. Mass Spectra

General: MS spectrometry was carried out on JEOL AccuTOF-GC as for Liquid Injection field desorption (LIFDI) or LTQ-FT as for Electrospray Ionization (ESI).

2.1 ESI-MS spectrum of [Ca([18]crown-6)OTf₂]

The given MS spectrum proofs the presence of $[Ca([18]crown-6)OTf_2]$ in solution as was assumed in dynamic ¹H NMR spectroscopy (see full text).

ESI-MS spectrum of [Ca([18]crown-6)OTf₂] - Found [Ca([18]crown-6)OTf]⁺.

3. XYZ data of quantum chemical calculations

General: Calculations were performed with the program system TURBOMOLE V7.0.1.^[2] The resolution of identity (RI) approximation, dispersion corrections, and the conductor-like screening model (COSMO) were applied throughout, the latter with default settings. For all calculations, the BP86 functional was chosen, utilizing a def2-TZVP basis set.^[3] Optimized structures were visualized with help of Diamond.^[4]

3.1 XYZ data and optimized structure of [15]crown-5

Η	0.3073713	1.1047252	-4.7607728
С	-0.2377617	1.0382155	-5.7215397
0	-1.6122295	1.3582188	-5.5321783
С	-0.1562788	-0.3694516	-6.2690797
Н	0.2405863	1.7389734	-6.4335821
0	-3.0806126	-2.2841254	-4.3571284
С	-3.9087638	-2.7822630	-3.3108712
С	-1.9585963	-3.1176554	-4.6256062
Н	-3.2977484	-3.0495304	-2.4273808
Н	-4.4465183	-3.6933515	-3.6390805
С	-4.9084322	-1.7139920	-2.9323251
Н	-2.2826622	-4.1273192	-4.9457475
Н	-1.3413534	-3.2334279	-3.7137952
С	-1.1433823	-2.4895333	-5.7327333
0	-4.2492192	-0.7167853	-2.1472153
Н	-5.3334294	-1.2771158	-3.8527797
Н	-5.7366231	-2.1643993	-2.3530954
0	-0.5623820	-1.2814771	-5.2495460
Н	-0.3657003	-3.2036501	-6.0658517
Н	-1.7999772	-2.2741101	-6.5957547
С	-4.9922754	0.4982547	-2.0208101
С	-4.8698486	1.4154630	-3.2247855
Н	-4.5862944	1.0081117	-1.1345016
Н	-6.0619050	0.2880698	-1.8358766
Н	-0.8233692	-0.4579227	-7.1453820
Н	0.8767545	-0.5816007	-6.6039683
0	-3.5099017	1.8119382	-3.3649144
Н	-5.2108751	0.9106408	-4.1485313
Н	-5.5269778	2.2933741	-3.0640395
С	-3.2885301	2.6763961	-4.4791547
С	-1.8311750	2.6034458	-4.8762582
Н	-3.5589063	3.7183095	-4.2226377
Н	-3.9140278	2.3637403	-5.3356165
Η	-1.1926403	2.6826901	-3.9760317
Н	-1.5835547	3.4505537	-5.5448581

С	0.4105972	-0.4281371	-0.0556492
С	-0.0411259	-0.1894040	1.3685209
0	0.9405438	0.6703683	1.9648666
С	1.0021971	0.6859257	3.3988560
С	1.5549039	2.0378787	3.7989171
0	2.6744906	2.2944772	2.9308957
С	3.3261160	3.5513937	3.1896854
С	4.3171381	3.7554384	2.0693400
0	3.5492091	3.6876398	0.8574488
С	4.2880135	3.9205022	-0.3527775
С	3.2763479	3.8282894	-1.4714351
0	2.6401454	2.5506840	-1.3127733
С	1.6430921	2.2296704	-2.2949052
С	1.1848334	0.8294425	-1.9636476
0	0.7443371	0.8640721	-0.5941892
Mq	2.1132480	2.0144562	0.7650904
Н	5.0864587	2.9647714	2.0642906
Н	5.0694305	3.1500553	-0.4610425
Н	1.3073668	-1.0687361	-0.0821762
Н	-0.3967693	-0.8904376	-0.6439786
Н	-1.0233019	0.3088720	1.4047609
Н	-0.0944301	-1.1468672	1.9074772
Н	1.6532780	-0.1368882	3.7341924
Н	-0.0015726	0.5552496	3.8300602
Н	0.8027946	2.8299136	3.6495121
Н	1.8813497	2.0246733	4.8501099
Н	3.8374068	3.5205630	4.1640005
Н	2.5729580	4.3574877	3.1920735
Н	4.8000243	4.7405396	2.1590249
Н	4.7500632	4.9192530	-0.3292474
Н	2.5221745	4.6291095	-1.3906731
Н	3.7754983	3.8853600	-2.4508448
Н	2.0795191	2.2611948	-3.3049310
Н	0.8108909	2.9505302	-2.2273692
Н	0.3564602	0.5233190	-2.6210364
Н	2.0187495	0.1142667	-2.0601766
Br	4.0278221	0.2021124	0.5491360
Br	0.2278524	3.8670423	0.9425425

0	-2.1603410	14.0798010	11.4924428
0	-0.1736153	16.1931537	11.5075118
0	0.9306801	12.3810551	8.2767718
0	2.0819638	14.7700263	9.3384278
С	2.6965389	14.0095680	8.2937402
0	-1.8461394	12.4140474	9.1426357
С	-2.7161600	12.1201188	10.2327918
С	-2.4489975	15.4373473	11.8142863
С	-1.1701808	11.2732906	8.6191892
С	-1.2324491	16.0674420	12.4607580
С	-3.2261746	13.4240456	10.8080918
С	-0.1554586	11.7452508	7.6000409
С	1.6474298	13.3022090	7.4584710
Si	1.4043560	16.6235405	11.9006449
Si	2.6654297	16.2350289	9.9230037
Н	3.3802264	13.2641436	8.7374434
Н	3.2907612	14.6468171	7.6143404
Н	-2.1771321	11.5487193	11.0128939
Н	-3.5754191	11.5072082	9.8968133
Н	-3.3016445	15.5024106	12.5196442
Н	-2.7226567	15.9962962	10.8981585
Н	-1.8846402	10.5806392	8.1321236
Н	-0.6616913	10.7197202	9.4318447
Н	-1.5264152	17.0581704	12.8524268
Н	-0.9139403	15.4448411	13.3156749
Н	-3.6076998	14.0642420	9.9896861
Н	-4.0678749	13.2187367	11.4978452
Н	0.2049871	10.8838939	7.0061405
Н	-0.6408198	12.4560301	6.9056187
Η	0.9483293	14.0423574	7.0241144
Η	2.1541305	12.7801828	6.6222872
С	2.0383270	15.5605858	13.3296112
С	1.4812322	18.4385891	12.4235048
С	2.4235839	17.5849210	8.6226634
С	4.5102150	16.1119076	10.3198497
Н	2.0022574	14.4892858	13.0841833
Н	1.4508513	15.7241979	14.2462372
Н	3.0835274	15.8220274	13.5555028
Н	2.5235859	18.7433554	12.6065613
Н	0.9171462	18.6081247	13.3539586
Н	1.0683943	19.0982101	11.6463884

Н	1.3622463	17.7041066	8.3610404
Н	2.9797799	17.3517764	7.7010320
Н	2.7935457	18.5513915	8.9983538
Н	4.8676285	17.0512834	10.7692682
Н	5.1023852	15.9347529	9.4084478
Н	4.7190515	15.2970909	11.0282738

3.4 XYZ data and optimized structure of $[Mg(1,2-disila[15]crown-5)Br_2]$ (3)

Br	0.7143947	11.8166413	11.4594283
Mg	-0.0561147	13.9055094	10.1078039
Br	-0.8904089	15.9663674	8.7155641
0	-1.9073626	13.9257505	11.4465588
0	0.3497477	15.2777907	11.8471139
0	0.6214018	12.8204674	8.2209806
0	2.0733457	14.5279924	9.6577492
С	2.7403513	13.6868233	8.6918390
0	-1.8347124	12.7581843	9.1159972
С	-2.8927653	12.3688358	9.9994191
С	-1.9718646	15.0271443	12.3590770
С	-1.4650758	11.7519678	8.1666681
С	-0.5856693	15.1398693	12.9388952
С	-3.1660453	13.5779991	10.8556698
С	-0.3954002	12.3789687	7.3115169
С	1.7690537	13.3894546	7.5787829
Si	1.3429311	16.6660088	11.7936751
Si	2.7339397	16.0637209	10.0092114
Н	3.0375019	12.7594190	9.2027137
Н	3.6394885	14.1742155	8.2875385
Н	-2.5669108	11.5129381	10.6151179
Н	-3.7894894	12.0884494	9.4240298
Н	-2.7113279	14.8217436	13.1500003
Н	-2.2556874	15.9450070	11.8157410
Н	-2.3342935	11.4649553	7.5537209
Н	-1.0786527	10.8643535	8.6964783
Н	-0.5319663	15.9986123	13.6245051
Н	-0.3238120	14.2257714	13.4910559

Н	-3.5339689	14.4201257	10.2448877
Н	-3.9017903	13.3426109	11.6404078
Н	0.0212476	11.6426441	6.6060860
Н	-0.7913567	13.2436092	6.7528014
Н	1.4762704	14.3102622	7.0456741
Н	2.1995372	12.6691220	6.8641547
С	2.3115139	16.7592417	13.4004020
С	0.3013596	18.2067968	11.5741248
С	2.6943204	17.1667561	8.4963114
С	4.5072584	15.8294743	10.5839411
Н	2.8586093	15.8247511	13.5888147
Н	1.6583921	16.9620946	14.2617752
Н	3.0450779	17.5775374	13.3373365
Н	0.9530833	19.0898016	11.4919219
Н	-0.3703271	18.3619585	12.4317037
Н	-0.2994360	18.1205418	10.6588024
Н	1.6614882	17.2702204	8.1381360
Н	3.3164869	16.7578138	7.6860583
Н	3.0864509	18.1630843	8.7517030
Н	4.9095280	16.7953149	10.9252762
Н	5.1565587	15.4661285	9.7735403
Н	4.5644592	15.1209288	11.4220290

References

- [1] Mestrelab Research S.L.: *MestReNova* 6.0.2, **2009**.
- [2] Turbomole Version 7.0.1, Turbomole GmbH 2016. Turbomole is a development of University of Karlsruhe and Forschungszentrum Karlsruhe 1989–2007, Turbomole GmbH since 2007.
- F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297; (b) F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, 8, 1057; (c) M. Dolg, H. Stoll, A. Savin and H. Preuss, *Theor. Chim. Acta*, 1989, 75, 173; (d) H. Stoll, B. Metz and M. Dolg, *J. Comput. Chem.*, 2002, 23, 767. (e) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem Phys.*, 2010, 132, 154104; (f) S. Grimme, S. Ehrlich, I. Goerigk, *J. Comput. Chem.*, 2011, 32, 1456.
- [4] K. Brandenburg, *Diamond Crystal and Molecular Structure Visualization*, Crystal Impact, Kreuzherrenstr. 102, 53227 Bonn, Germany.