Supporting information

Syntheses, crystal structures and photophysical properties of Cu(II)

complexes: Fine tuning of coordination sphere for selective binding of

Azamethiphos.

Pushap Raj^a, Amanpreet Singh^a, AjneshSingh^b, Narinder Singh^{a,*}

^aDepartment of Chemistry, Indian Institute Technology Ropar, Punjab, 140001, India.

^bDepartment of Applied Sciences and Humanities, Jawaharlal Nehru Govt. Engineering College, Sundernagar, Mandi(H.P.)-175018, India.

*Corresponding author (Narinder Singh) E-mail: nsingh@iitrpr.ac.in; Tel: +91-1881242176

Table of Content:

Figure S1. ¹H NMR spectrum of ligand L1

Figure S2. ¹³C NMR spectrum of ligand L1

Figure S3. ¹H NMR spectrum of ligand L2

Figure S4. ¹³C NMR spectrum of ligand L2

Figure S5. FTIR Spectrum of ligand L1

Figure S6. FTIR Spectrum of ligand L2

Figure S7. ESI-mass spectrum of ligand L1

Figure S8. ESI-mass spectrum of ligand L2

Figure S9. FTIR Spectrum of complex C1

Figure S10. FTIR Spectrum of complex C2

Figure S11 (A): The powder XRD pattern of C1 (simulated from single crystal data and synthesized in bulk), (B) The powder XRD pattern of C2 (simulated from single crystal data and synthesized in bulk).

Figure S12: The solid state emission spectrum of C1 and C2 (bulk synthesis).

Figure S13. The emission spectrum of C2 (10 μ M) in presence of tasted organophosphate (30 μ M)

Figure S14. Jobs plot of C1 in presence of azamethiphos.

Figure S15. ³¹P NMR spectrum of Azamethiphos and copper complex of Azamethiphos in DMSO-d₆.

Figure S16. The ESI-Mass spectrum of copper: azamethiphos complex.

Figure S17. The change in the emission spectrum on addition of Cu^{2+} ion (0-10 μ M) in C1: azamethiphos solution.

Figure S18. Reversible switching cycles of fluorescence intensity ($\lambda_{em} = 430$ nm) by alternate addition of azamethiphos and copper ion

Table S1. Selected bond lengths and angles (Å,°) for C1

Table S2. Hydrogen bonding parameters (Å, °) of C1

Table S3. Selected bond lengths and angles (Å,°) for C2

Table S4. Hydrogen bonding parameters (Å, °) of C2

 Table S5. Comparisons table between literatures reported sensors and present sensor of organophosphates.

Figure S1. ¹H NMR spectrum of ligand L1 in CDCl₃

Figure S2. ¹³C NMR spectrum of ligand L1 in CDCl₃

Figure S3. ¹H NMR spectrum of ligand L2 in CDCl₃

Figure S5. FTIR Spectrum of ligand L1

Figure S6. FTIR Spectrum of ligand L2

Figure S7. ESI-mass spectrum of ligand L1

Figure S8. ESI-mass spectrum of ligand L2

Figure S9. FTIR Spectrum of complex C1

Figure S10. FTIR Spectrum of complex C2

Figure S11 (A): The powder XRD pattern of C1 (simulated from single crystal data and synthesized in bulk), (B) The powder XRD pattern of C2 (simulated from single crystal data and synthesized in bulk).

Figure S12: The solid state emission spectrum of C1 and C2 (bulk synthesis).

Figure S13. The emission spectrum of C2 (10 μ M) in presence of tasted organophosphate (30 μ M)

Figure S14. Jobs plot of C1 in presence of azamethiphos.

Figure S15. ^{31}P NMR spectrum of Azamethiphos and copper complex of Azamethiphos in DMSO-d_6

Figure S16. The ESI-Mass spectrum of copper: azamethiphos complex

Figure S 17. The change in the emission spectrum on addition of Cu^{2+} ion (0-10 μ M) in C1: azamethiphos (10:30 μ M).

Figure S18. Reversible switching cycles of fluorescence intensity ($\lambda_{em} = 430$ nm) by alternate addition of azamethiphos and copper ion

Bond lengths(Å)						
Cu(1)-N(2)	1.9814(18)	O(1)-C(1)	1.211(3)	O(4)-N(3)	1.246(3)	
Cu(1)-O(2)	2.1307(15)	O(2)-C(12)	1.231(2)	O(5)-N(3)	1.220(2)	
Cu(1)-O(3)	2.1632(17)	O(3)-N(3)	1.273(2)	N(1)-C(12)	1.387(3)	
Bond angles(°)						
N(2)#1-Cu(1)-N(2)	180.0	O(2)-Cu(1)-O(2)#1	180.0	N(2)#1-Cu(1)-O(3)#1	96.38(8)	
N(2)#1-Cu(1)-O(2)	99.70(6)	N(2)#1-Cu(1)-O(3)	83.62(8)	N(2)-Cu(1)-O(3)#1	83.62(8)	
N(2)-Cu(1)-O(2)	80.30(6)	N(2)-Cu(1)-O(3)	96.38(8)	O(2)-Cu(1)-O(3)#1	81.45(6)	
N(2)#1-Cu(1)-O(2)#1	80.30(6)	O(2)-Cu(1)-O(3)	98.55(6)	O(2)#1-Cu(1)-O(3)#1	98.55(6)	
N(2)-Cu(1)-O(2)#1	99.70(6)	O(2)#1-Cu(1)-O(3)	81.45(6)	O(3)-Cu(1)-O(3)#1	180.0	

D-H··· A	D····A∕ Å	H···A∕ Å	D-H····A/º
N2-H1AO1 ⁱ	2.983(2)	2.178(3)	172.4(2)
N2-H1BO4 ⁱⁱ	2.866(3)	2.033(3)	164.9(3)
C4-H4AO5 ⁱⁱⁱ	3.251(3)	2.675(2)	120.7(2)

Table S2. Hydrogen bonding parameters (Å, °) of C1

Equivalent positions: (i) -x,-y+1,-z+1, (ii) -x+1,-y,-z+1, (iii) -x+1,-y+1,-z, (iv) x,+y+1,+z-1,

Table S3. Selected bond lengths and angles (Å,°) for C2

Bond lengths(Å)						
Cu(1)-N(1)	1.9819(17)	Cu(1)-O(3)#1	1.9930(16)	N(1)-C(1)	1.338(3)	
Cu(1)-N(1)#1	1.9819(17)	Cu(1)-O(5)	2.423(2)	N(1)-C(5)	1.339(3)	
Cu(1)-O(3)	1.9930(16)	Cu(1)-O(5)#1	2.423(2)	N(2)-C(18)	1.395(3)	
Bond angles(°)						
N(1)-Cu(1)-N(1)#1	91.50(10)	O(3)-Cu(1)-O(3)#1	90.53(10)	N(1)-Cu(1)-O(5)#1	104.15(7)	
N(1)-Cu(1)-O(3)	92.22(7)	N(1)-Cu(1)-O(5)	107.83(8)	N(1)#1-Cu(1)-O(5)#1	107.83(8)	
N(1)#1-Cu(1)-O(3)	160.65(7)	N(1)#1-Cu(1)-O(5)	104.15(7)	O(3)-Cu(1)-O(5)#1	89.63(8)	
N(1)-Cu(1)-O(3)#1	160.65(7)	O(3)-Cu(1)-O(5)	56.71(7)	O(3)#1-Cu(1)-O(5)#1	56.71(7)	
N(1)#1-Cu(1)-O(3)#1	92.22(7)	O(3)#1-Cu(1)-O(5)	89.63(8)	O(5)-Cu(1)-O(5)#1	133.53(11)	

Table S4. Hydrogen bonding parameters (Å, °) of C2

D-H··· A	D····A/ Å	H····A/ Å	D-H···A/º
С1-Н1О4 і	3.172(3)	2.571(3)	121.4(1)
С2-Н2О1	3.207(3)	2.576(2)	124.2(1)
C5-H5O1 ii	3.273(3)	2.437(2)	146.7(1)

Equivalent positions: (i) -x+1,-y+1,-z+1, (ii)x,-y,+z-1/2

Reference: (S)

1. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, G. G.

Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115-119.

- 2. G. M. Sheldrick, Acta Crystallogr. A71 (2015) 3-8.
- 3. L.J. Farrugia, J. Appl. Crystallogr. 32, 1999, 837.
- 4. M. Nardelli, J. Appl. Crystallogr. 28, 1995, 659.
- 5. W. T. Pennington, DIAMOND Visual Crystal Structure Information System, J. Appl. Cryst. 32, 1999, 1028.

Table S5. Comparisons table between literatures reported sensors and present sensor of organophophate.

S.NO	Material used	Technique used for sensing	Detection limit	Solvent System	Reference No.
1	Zirconium nanoparticles	electrochemical	9 ng/ml	Water	1
2	Organic receptor	Fluorescence	Not given	dichloromethane	2
3	Lysine modified carbon nanotubes	electrochemical	Microlevel	Ethanol/water	3
4	Metal complexes	Fluorescence	44 – 71 nM	Water	4
5	Organic receptor	NMR spectroscopy	Not given	DMSO-d6	5
6	Metal complex	Fluorescence	Not given	Chloroform: methanol	6
7	Organic receptor	Fluorescence	Not given	Methanol	7
8	Metal complexes	Fluorescence	Not given	Chloroform: acetonitrile	8
9	Metal complexes	Fluorescence	19 nM	Methanol	Present manuscript

References:

- 1 G. Liu and Y. Lin, 2005, **77**, 5894–5901.
- 2 S.-W. Zhang and T. M. Swager, J. Am. Chem. Soc., 2003, 125, 3420–3421.
- 3 P. M. Diakowski, Y. Xiao, M. W. P. Petryk and H.-B. Kraatz, *Anal. Chem.*, 2010, **82**, 3191–3197.
- 4 P. Raj, A. Singh, K. Kaur, T. Aree, A. Singh and N. Singh, *Inorg. Chem.*, 2016.
- 5 M. R. Sambrook, J. R. Hiscock, A. Cook, A. C. Green, I. Holden, J. C. Vincent and P. A.

Gale, Chem. Commun., 2012, 48, 5605-5607.

- 6 S. Sarkar and R. Shunmugam, *Chem. Commun.*, 2014, **50**, 8511–8513.
- 7 T. J. Dale and J. Rebek, J. Am. Chem. Soc., 2006, **128**, 4500–4501.
- 8 D. Knapton, M. Burnworth, S. J. Rowan and C. Weder, *Angew. Chemie*, 2006, **118**, 5957–5961.