Supporting Information

Coligand modifications fine-tuned the structure and magnetic property of two triple-bridged azido-Cu(II) chain compounds exhibiting ferromagnetic order and slow relaxation

Xiangyu Liu,*a Feifei Li,a Xiaohui Ma,a Peipei Cen,b Shuchang Luo,d Quan Shi,*c Shenru Ma,a

Yuewei Wu,^a Chengcheng Zhang,^a Zhao Xu,^a Weiming Song,^a Gang Xie^b and Sanping Chen*^b

- a College of Chemistry and Chemical Engineering, State Key Laboratory Cultivation Base of Natural Gas Conversion, Ningxia University, Yinchuan 750021, China
- b Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
- c Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

d School of Chemical Engineering, Guizhou University of Engineering Science, Bijie, 551700, China

*Corresponding author Dr. Xiangyu Liu Tel.: +86-951-2062004 Fax: +86-951-2062860 E-mail: xiangyuliu432@126.com

*Corresponding author Prof. Sanping Chen Tel.: +86-29-88302604 Fax: +86-29-88302604 E-mail: sanpingchen@126.com

*Corresponding author Dr. Quan Shi Tel.: +86-411-84379213 Fax: +86-411-84379213 E-mail: shiquan@dicp.ac.cn

Contents

Table S1. Selected Bond Lengths (Å) and Bond Angles (°) for 1

Table S2. Selected Bond Lengths (Å) and Bond Angles (°) for 2

Fig. S1 PXRD patterns for compounds: (a) 1, (b) 2.

Fig. S2 Thermal dependence of χ_M for 1.

Fig. S3 Hysteresis loops for 2 at different temperatures.

- Fig. S4 Hysteresis loop for 2 at 2 K.
- Fig. S5 FC and ZFC plots for 2.
- **Fig. S6** χ'_M and $\chi''_M vs T$ plots at 1000 Hz for **1**.

			1			
Cu(1)-O(1)#1	1.951(2)	Cu(1)#1-N(1)	2.005(2)	O(1)#1-Cu(1)-O(2)	179.11(9)	
Cu(1)-O(2)	1.9599(19)	N(1)-N(2)	1.204(3)	Cu(1)-N(1)-Cu(1)#1	106.57(10)	
Cu(1)-O(3)	2.466	N(2)-N(3)	1.137(4)	N(3)-N(2)-N(1)	178.9(4)	
Cu(1)-N(1)	1.994(2)	F(1)-C(3)	1.319(4)	O(1)-C(1)-O(2)	127.4(2)	
Cu(1)-N(1)#2	2.005(2)	C(8)-O(3)	1.397(4)	O(2)-Cu(1)-N(1)	90.39(8)	
#1 x+1/2,-y+1/2,-z		#2 x-1/2,-y+1/2,-z				

Table S1. Selected Bond Lengths (Å) and Bond Angles (°) for 1

Table S2. Selected Bond Lengths (Å) and Bond Angles (°) for ${\bf 2}$

			2			
Cu(1)-O(1)	1.9595(18)	Cu(1)#2-N(1)	1.9894(17	7)	O(1)#1-Cu(1)-O(1)	180.0
Cu(1)-O(1)#1	1.9595(18)	N(1)-N(2)	1.223(4)		Cu(1)#2-N(1)-Cu(1)	110.33(14)
Cu(1)-O(2)	2.556	N(3)-N(2)	1.127(4)		N(3)-N(2)-N(1)	178.3(4)
Cu(1)-N(1)	1.9894(17)	F(1)-C(3)	1.354(5)		O(1)-C(1)-O(1)#3	128.5(3)
Cu(1)-N(1)#1	1.9894(17)	O(2)-C(8)	1.401(5)		O(1)-Cu(1)-N(1)	91.16(10)
#1 -x+1,-y+1,-z+1		#2 -x+1,y-1/2,-z+1		#3 x,-y+1/2,z		

Fig. S1 PXRD patterns for compounds: (a) 1, (b) 2.

Fig. S2 Thermal dependence of χ_M for **1**.

Fig. S3 Hysteresis loops for 2 at different temperatures.

Fig. S4 Hysteresis loop for 2 at 2 K.

Fig. S5 FC and ZFC plots for 2.

Fig. S6 χ'_M and $\chi''_M vs T$ plots at 1000 Hz for **1**.