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'H NMR spectrum of LTi(O'Pr), in dg-toluene solvent, at 298 K.
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13C NMR spectrum of LTi(O'Pr), in dg-toluene solvent, at 298 K.
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Figure S3 DOSY NMR spectrum of LTi(O'Pr); in dg-toluene at 298K.

Comparison of the diffusion coefficient obtained experimentally for LTi(O'Pr), (logD =-9.177), to
the calibration plot, yielded a predicted molecular weight of 614 g mol! for the species present
in solution. This value lies close to that of LTi(O'Pr),, which would have a molecular weight of 716
g mol, giving a 86% agreement which lies within the error range typically expected for DOSY

analysis.
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Figure S4 Overlaid spectra of LTi(O'Pr); (bottom) and the in situ reaction with NaHMDS (middle)
or NaH (top), to form LNaTi(O'Pr),, along with LNa, and unreacted LTi(O'Pr),, in dg-toluene

solvent, at 298K.
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Figure S5: 'H NMR spectrum of LTi(OPr),ZnEt in dg-toluene solvent, at 298 K.
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Figure $8: 13C NMR spectrum of LTi(O'Pr),ZnPh in dg-toluene solvent, at 298 K.
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Figure S9: MALDI-ToF mass spectra of PCHC produced with LTi(O'Pr),ZnEt.
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Figure S10: Illustrates the structures of the titanium (IV) diphenolate catalyst (A, top left), the
titanium (IV) bis(salphen) catalyst (B, top right) and the titanium (IV) N-heterocyclic carbene
catalysts (C and D, bottom).

Table S1 CO,/CHO ROCOP data for runs using titanium iso-propoxide literature reported
catalysts (A-C) and complexes 3 and 4.

Cat. Additive Cat. Time CO, Temp. Conv. TOF CO, M, [P]
(cat:additive) Loading (h) Pressure (°C) (%) (h'Y) (%)
(mol%) (bar)
A' [PPN]CI(1:1) 0.05 12 20 60 45 76 99 13000 [1.27]
B? TBAB (1:1) 0.1 6 35 50 95 123 74 9130 [1.14]
C3 [PPN]CI(1:1)  0.04 24 10 60 44 46 >99 13800 [1.38]
D* [PPN]CI(1:1) 0.04 24 <1 60 6 6  >99 -
D* [PPNIN;(1:1) 0.04 24 <1 60 8 8  >99 -
3 - 1 6 1 80 18 3 >99 -
3 - 1 24 1 80 53 2 94 2190 [1.35]
4 - 1 6 1 80 23 4 95 -
4 - 1 24 1 80 40 2 98 1750 [1.37]
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Figure S11. [llustrates the structures of literature reported catalysts A-F (refer to Table S2).

Table S2. Results for ROP of lactide using titanium iso-propoxide literature reported catalysts
(A-F) and complexes 3 and 4.

Cat. Additive [LA] Solvent Temp. Cat. kops (reported) Kobs
(cat:additive) (M) (°CQ) Loading (s
(mol%)

AS iPrOH (1:1) 1 toluene 75 1 3.7x10¢s1 3.7x10°s1
B® iPrOH (1:1) 1 toluene 75 1 2.0x10°s? 2.0x10°s?
(o8 iPrOH (1:1) 1 toluene 75 1 1.7x10°s1 1.7x10%s1
Dé N/A - neat 130 0.5 0.61 min! 10.2x 103 s
E7 N/A 0.5  benzene 100 1 16 x103ht 44x10°6s1
F8 N/A 2 toluene 60 1 94.2x103min? 15.7x10*s?
3 N/A 1 THF 70 1 10.8x10*s? 10.8x 10 s
4 N/A 1 THF 70 1 6.3x10*s! 6.3x10*s!
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Figure S12. MALDI-ToF spectrum of polylactide produced using LTi(O'Pr),ZnEt.
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Figure S13. [llustrates the structures of literature reported catalysts A-D (refer to Table S3).

Table S3. Results for ROP of e-caprolactone using titanium iso-propoxide literature reported
catalysts (A-D) and complexes 3 and 4.

Cat. [e-CL] Solvent Temp. Cat. k,ps (reported) Kobs
(M) (°C) Loading (s
(mol%)

A 1.807  toluene 25 1 488x10°st 49x10°
B? 1.807  toluene 25 1 7.54x105s1 7.5x10°
C10 1.0 toluene 100 1 7.5x 103 min? 1.3x10*
D10 1.0 toluene 100 1 6.5x102min? 10.8x10*
3 0.9 THF 70 1 5.2xx10%st 5.2xx10+%
4 0.9 THF 70 1 4.6 xx104s1 4.6 xx10*4
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Figure S14. MALDI-ToF mass spectra of polycaprolactone produced with LTi(O'Pr),ZnEt.
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Polymerization Studies

CHO-CO, Copolymerization Reactions

The catalyst LTi(O'Pr),ZnEt (99 umol, 80 mg) was placed in a Schlenk tube in the glovebox and
CHO (9.9 mmol, 1.0 mL) was added. The reaction mixture was subsequently de-gassed and then
heated to 80 °C at 1 bar CO; pressure. The reaction mixture was quenched by exposure to air and
a 'H NMR spectrum of the crude reaction mixture was recorded in CDCl; solvent. Unreacted CHO
was removed in vacuo and the product polycarbonate was then purified through dissolution in

THF followed by precipitation from pentane.
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Figure S15. 'H NMR spectrum of crude PCHC sample produced with LTi(O'Pr),ZnEt, in CDCl; at
298 K, showing formation of PCHC (4.68 ppm) with ether linkages (3.4 ppm) and cyclic carbonate
(4.1 ppm) by-products.
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Figure S16. SEC plot of Mw for the PCHC formed by LTi(O'Pr),ZnEt.

Lactide Polymerization Reactions

Under a nitrogen atmosphere in the glovebox, LTi(O'Pr),ZnEt (8.1 mg, 0.01 mmol) was added to
a screw capped vial, followed by a 1M solution of L-lactide in THF (144 mg, 1 mmol in 1 mL). The
polymers were purified through recrystallization from THF /methanol.
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Figure S17. Expanded 'H NMR spectrum of the crude L-lactide polymerization reaction mixture
in CDCl; at 298K, showing the polylactide (5.15 ppm) and L-lactide (5.04 ppm) signals used to
calculate the TON and TOF number achieved by the catalyst.
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Figure S18. SEC plot of Mw for the polylactide formed by LTi(O'Pr),ZnEt.

e-Caprolactone Polymerization Reactions

Under a nitrogen atmosphere in a glovebox, e-caprolactone (0.11 mL, 1 mmol), THF (1 mL) and
LTi(O'Pr),ZnEt (8.1 mg, 0.01 mmol) were added to a screw vial. The reaction was then stirred at
21°C or 70 °C. The polymerization was quenched by the addition of hexane, and the product was
purified by dissolution in THF, then precipitation from methanol to afford a white powder.

0) catalyst (1 mol%),

THF, 70°C
LA )
o n

e-CL PCL

, |
. oy i JJ'%{ ) ‘W

<

72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 47 10 38 36 34 32 30 28 26 24 22 20 18 16 14 12
ppfn

Figure S$19. Expanded 'H NMR spectrum of the crude e-caprolactone polymerization reaction

mixture in CDCl; at 298K, showing the polycaprolactone (4.08 ppm) and e-caprolactone (4.26

ppm) signals used to calculate the TON and TOF number achieved by the catalyst.
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DOSY NMR Studies
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Figure S20. DOSY NMR spectrum of LTi(O'Pr),ZnEt in dg-toluene.

Comparison of the diffusion coefficient obtained experimentally for LTi(O'Pr),ZnEt (logD = -
9.179), to the calibration plot, yielded a predicted molecular weight of 711 g mol™! for the species
present in solution. This value lies close to that of LTi(O'Pr),ZnEt, which would have a molecular
weight of 808 g mol?!, giving an 88% agreement which lies within the error range typically

expected for DOSY analysis.

Instrument Details

The Diffusion-Ordered Spectroscopy (DOSY) NMR experiments were performed at 298K on a
Bruker 500 AVANCE III HD NMR spectrometer operating at a frequency of 500.13 MHz for proton
resonance under TopSpin (version 3.2, Bruker Biospin, Karlsruhe) and equipped with a z-
gradient bbfo/5mm tuneable “SmartProbe”™ probe and a GRASP II gradient spectroscopy

accessory providing a maximum gradient output of 53.5 G/cm (5.35G/cmA).

Diffusion ordered NMR data was acquired using the Bruker pulse program ledbpgp2s with a
spectral width of 5500Hz (centred on 4.5 ppm) and 32768 data points.!! A relaxation delay of 12

S14



s was employed along with a diffusion time (large delta) of 100 ms and a longitudinal eddy
current delay (LED) of 5 ms. Bipolar gradients pulses (little delta/2) of 2.2 ms and homospoil
gradient pulses of 0.6 ms were used. The gradient strengths of the 2 homospoil pulses were -
17.13% and -13.17%. 32 experiments were collected with the bipolar gradient strength, initially
at 2% (1°t experiment), linearly increased to 95% (32"¢ experiment). All gradient pulses were
smooth-square shaped (SMSQ10.100) and after each application a recovery delay of 200 us used.
The experiment was run with 24 scans per increment, employing one stimulated echo with two

spoiling gradients.

DOSY plots were generated by using the DOSY processing module of TopSpin. Parameters were
optimized empirically to find the best quality of data for presentation purposes. Diffusion

coefficients were calculated by fitting intensity data to the Stejskal-Tanner expression.

Preparation of External Calibration Plots

A calibration plot was formed through DOSY analysis of a range of standards spanning the
molecular weight range of 161.4 to 643.4 g mol! [hexamethyldisilazane (HMDSH), 161.4;
Zn(HMDS),, 386.2; [-diketiminate ligand HC(C(Me)N-2,6-'Pr,C¢Hs),, (BDIH), 418.7;
(BDI)Zn(HMDS), 643.4 g mol?, Table S4]. From the diffusion coefficients of the external
standards, linear calibration graphs were obtained by plotting logD vs logMW (Graph S1).
Following DOSY analysis of the product (i.e. LTi(O'Pr),ZnEt), the diffusion coefficient obtained for
the signals corresponding to the product allowed an estimate of the MW of the species present in

solution.

Table S4. Diffusion coefficients of standards in dg-toluene solution compared to their molecular
weight.

Compound LogD MW LogMW

(g mol?)
ds-toluene -8.702 100.2 2.0008
HMDSH -8.850 161.4 2.2079
Zn(HMDS), -9.039 386.2 2.5868
(BDI)Zn(HMDS) -9.182 643.4 2.8085

S15



Graph S1. LogD vs LogMW representation from the 'H DOSY NMR data obtained for shows the
standards HMDSH, Zn(HMDS); and (BDI)Zn(HMDS) in dg-toluene solvent.
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Xray Crystallographic Data

The X-ray crystal structure of 3

Crystal data for 3: C4H;;N40,TiZn, M = 810.30, triclinic, P-1 (no. 2), a = 12.0895(5), b =
13.3126(5), c = 14.0794(6) A, a = 82.118(3), B = 73.055(4), y = 85.369(3)°, V= 2145.13(15) A3, Z
=2, D, = 1.255 g cm3, p(Mo-Ka) = 0.788 mm™!, T = 173 K, orange plates, Agilent Xcalibur 3E
diffractometer; 8462 independent measured reflections (Ri,; = 0.0197), F? refinement,'>13 R, (obs)
= 0.0466, wR,(all) = 0.1099, 6525 independent observed absorption-corrected reflections [|F,| >
40(|F,|), 265y = 50°], 514 parameters. CCDC 1507078.

The C24-based t-butyl group and the C50-based ethyl ligand in the structure of 3 were both
found to be disordered. In each case two orientations were identified (of ca. 62:38 and 78:22%
occupancy), their geometries were optimized, the thermal parameters of adjacent atoms were
restrained to be similar, and only the non-hydrogen atoms of the major occupancy orientations
were refined anisotropically (those of the minor occupancy orientations were refined
isotropically). The N-H hydrogen atoms on N4, N14 and N18 were located from AF maps and

refined freely subject to an N-H distance restraint of 0.90 A.

The X-ray crystal structure of 4

Crystal data for 4: C4H;,N40,TiZn-CcHyy, M = 944.51, monoclinic, P2;/n (no. 14), a =
15.53237(14), b = 19.46458(16), c = 17.75532(16) A, B = 102.0062(9)°, V = 5250.56(8) A3, Z = 4,
D.=1.195 g cm3, p(Cu-Ka) = 2.196 mm1, T = 173 K, yellow blocks, Agilent Xcalibur PX Ultra A
diffractometer; 10169 independent measured reflections (R, = 0.0319), F? refinement, > 13
Ri(obs) = 0.0374, wR,(all) = 0.1024, 8422 independent observed absorption-corrected
reflections [|F,| > 40(|F,|), 20 = 135°], 621 parameters. CCDC 1507079.

The 045-based iso-propyl group and the C61-based included hexane solvent molecule in the
structure of 4 were both found to be disordered. For the former two orientations for the C(H)Me,
unit were identified of ca. 80 and 20% occupancy, whilst for the latter two orientations for the
complete molecule were identified of ca. 67 and 33% occupancy. In each case the geometries of
the two orientations were optimized, the thermal parameters of adjacent atoms were restrained
to be similar, and only the non-hydrogen atoms of the major occupancy orientations were refined
anisotropically (those of the minor occupancy orientations were refined isotropically). The N-H
hydrogen atoms on N4, N14 and N18 were located from AF maps and refined freely subject to an

N-H distance restraint of 0.90 A.
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Figure S22. The crystal structure of 4 (50% probability ellipsoids).
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Determination of dn/dc from RI

Graph S2. Determination of dn/dc for polycaprolactone (dn/dc = 0.078)

Determine dn/dc from EI

B data — fit

-4

1.5x10
-4

1010

-5
5.0x10

differential refractive index

0.0 T T T T T

0.00040 0.0005 0.0010 0.0015 0.0020
Concentration (g/mL}

Fit R*=0.0936

Graph S3. Determination of dn/dc for polylactide (dn/dc = 0.05)

Determine cn/dc from EI

B data — fit

-4
1.0x10

-5
5.0x10

differential refractive index

G'GT T T T T

0.0000 0.0005 0.0010 0.0015 0.0020
Concentration (g/mL)

519



References

El

10.
11.
12.
13.

K. Nakano, K. Kobayashi and K. Nozaki, J. Am. Chem. Soc., 2011, 133, 10720-10723.

M. Mandal and D. Chakraborty, J. Polym. Sci., Part A: Polym. Chem., 2015, 54, 809-824.
C. C. Quadri and E. Le Roux, Dalton Trans., 2014, 43, 4242-4246.

J. Hessevik, R. Lalrempuia, H. Nsiri, K. W. Tornroos, V. R. Jensen and E. Le Roux, Dalton
Trans., 2016, 45, 14734-14744.

C. Bakewell, G. Fateh-Iravani, D. W. Beh, D. Myers, S. Tabthong, P. Hormnirun, A. J. P. White,
N. Long and C. K. Williams, Dalton Trans., 2015, 44, 12326-12337.

T. K. Saha, B. Rajashekhar and D. Chakraborty, RSC Adv., 2012, 2, 307-318.

J.-C. Buffet, A. N. Martin, M. Kol and J. Okuda, Polym. Chem., 2011, 2, 2378-2384.

H. C. Tseng, H. Y. Chen, Y. T. Huang, W. Y. Lu, Y. L. Chang, M. Y. Chiang, Y. C. Laiand H. Y.
Chen, Inorg. Chem., 2016, 55, 1642-1650.

L. C. Liang, S. T. Lin and C. C. Chien, Inorg. Chem., 2013, 52, 1780-1786.

A. D. Schwarz, A. L. Thompson and P. Mountford, Inorg. Chem., 2009, 48, 10442-10454.
D. H. Wu, A. D. Chen and C. S. Johnson, J. Magn. Reson. A, 1995, 115, 260-264.
SHELXTL, Bruker AXS, Madison, WI.

SHELX-2013 and G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.

S20



