Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Pursuing the active species in an aluminum-based Lewis acid system for catalytic Diels Alder cycloadditions

Zhizhou Liu, Rakesh Ganguly, Dragoslav Vidović*

School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore, 637371. Email: dvidovic@ntu.edu.sg

TABLE OF CONTENTS

1. NMR spectra of Diels-Alder products	S-2
2. NMR spectra for aluminum complexes 2 - 6	S-13
3. NMR spectra for 6 + 8 /dbpy	S-19
4. NMR spectra of pyridinium triflate, [dbpy-H][OTf]	S-20
5. Summary of crystallographic data for 3 , 4 , 5 , and 6 .	S-22
6. References	S23

1. NMR spectra of Diels-Alder products

Figure S1: ¹H NMR spectrum (400 MHz, CDCl₃) of 1-(3,4-Dimethylcyclohex-3-en-1-yl)ethanone, **20**).

Figure S2: ¹³C NMR spectrum (100.5 MHz, CDCl₃) of 1-(3,4-Dimethylcyclohex-3-en-1-yl)ethanone, **20**).

Figure S3: ¹H NMR spectrum (400 MHz, CDCl₃) of 1-(3,4-dimethylcyclohex-3-en-1-yl)propan-1one, **21**).

Figure S4: ¹³C NMR spectrum (100.5 MHz, CDCl₃) of 1-(3,4-dimethylcyclohex-3-en-1-yl)propa n-1-one, **21**).

Figure S5: ¹H NMR spectrum (400 MHz, CDCl₃) of 1-(4,5-dimethyl-1,2,3,6-tetrahydro-[1,1'-bip henyl]-2-yl)ethan-1-one, **22**).

Figure S6: ¹³C NMR spectrum (100.5 MHz, CDCl₃) of 1-(4,5-dimethyl-1,2,3,6-tetrahydro-[1,1'-biphenyl]-2-yl)ethan-1-one, **22**).

Figure S7: ¹H NMR spectrum (400 MHz, CDCl₃) of (4,5-dimethyl-1,2,3,6-tetrahydro-[1,1'-biph enyl]-2-yl)(phenyl)methanone, **9**).

Figure S8: ¹³C NMR spectrum (100.5 MHz, CDCl₃) of (4,5-dimethyl-1,2,3,6-tetrahydro-[1,1'-bi phenyl]-2-yl)(phenyl)methanone, **9**).

Figure S9: ¹H NMR spectrum (400 MHz, CDCl₃) of (6,7-dimethyl-3,4,4a,5,8,8a-hexahydronap hthalen-1(2H)-one, **24**).

Figure S10: ¹³C NMR spectrum (100.5 MHz, CDCl₃) of (6,7-dimethyl-3,4,4a,5,8,8a-hexahydro naphthalen-1(2H)-one, **24**).

Figure S11: ¹H NMR spectrum (400 MHz, CDCl₃) of (3,4,6-trimethylcyclohex-3-ene-1-carbald ehyde, **25**).

Figure S12: ¹³C NMR spectrum (100.5 MHz, CDCl₃) of (3,4,6-trimethylcyclohex-3-ene-1-carba ldehyde, **25**).

S-7

Figure S13: ¹H NMR spectrum (400 MHz, CDCl₃) of (ethyl 3,4,6-trimethylcyclohex-3-ene-1-ca rboxylate, **26**).

Figure S14: ¹³C NMR spectrum (100.5 MHz, CDCl₃) of (ethyl 3,4,6-trimethylcyclohex-3-ene-1 -carboxylate, **26**).

Figure S15: ¹H NMR spectrum (400 MHz, CDCl₃) of (1-((1R,2R,4R)-bicyclo[2.2.2]oct-5-en-2-yl)ethan-1-one, **27**).

Figure S16: ¹³C NMR spectrum (100.5 MHz, CDCl₃) of (1-((1R,2R,4R)-bicyclo[2.2.2]oct-5-en-2-yl)ethan-1-one,**27**).

S-9

Figure S17: ¹H NMR spectrum (400 MHz, CDCl₃) of (phenyl((1R,2S,3R,4S)-3-phenylbicyclo[2. 2.2]oct-5-en-2-yl)methanone, **28**).

Figure S18: ¹H NMR spectrum (100.5 MHz, CDCl₃) of (phenyl((1R,2S,3R,4S)-3-phenylbicyclo[2.2.2]oct-5-en-2-yl)methanone, **28**).

Figure S19: ¹H NMR spectrum (400 MHz, CDCl₃) of (1-(4-methylcyclohex-3-en-1-yl)ethan-1-o ne, **29**).

S-11

Figure S20: ¹³C NMR spectrum (100.5 MHz, CDCl₃) of (1-(4-methylcyclohex-3-en-1-yl)ethan-1-one, **29**).

Figure S21: ¹H NMR spectrum (400 MHz, CDCl₃) of (1-(4-methylcyclohex-3-en-1-yl)ethan-1-o ne, **30**).

Figure S22: ¹³C NMR spectrum (100.5 MHz, CDCl₃) of (1-(4-methylcyclohex-3-en-1-yl)ethan-1-one, **30**).

2. NMR spectra of Aluminum complexes 2 - 6

Figure S23: ¹H NMR spectrum (400 MHz, CDCl₃) of (LAICl₂, $\mathbf{3}$).

Figure S25: ^{13}C NMR spectrum (100.5 MHz, CDCl₃) of (LAICl₂, **3**).

Figure S26: ²⁷Al NMR spectrum (104.2 MHz, CDCl₃) of (LAICl₂, 3).

Figure S27: ¹H NMR spectrum (400 MHz, CDCl₃) of (LAICl₂THF, **2**).

Figure S28: ¹³C NMR spectrum (100.5 MHz, CDCl₃) of (LAICl₂THF, **2**).

Figure S30: ¹H NMR spectrum (400 MHz, CD₂Cl₂) of ([LAICl₂NaCl₂AIL][NaBAr^{Cl}₄], **5**).

Figure S31: ¹H NMR spectrum (400 MHz, CD₂Cl₂) of ([LAICl₂NaCl₂AIL][NaBAr^{Cl}₄], **5**) at - 50°C.

S-17

*Solvent (pantane) and/or impurity

Figure S32: ¹³C NMR spectrum (100.5 MHz, CD₂Cl₂) of ([LAICl₂NaCl₂AIL][NaBAr^{Cl}₄], **5**).

Figure S34: ¹H NMR spectrum (400 MHz, CD₂Cl₂) of ([LAICI(THF)][BAr^{Cl}₄], **6**) at - 50°C.

*Solvent (pantane)

3. NMR spectra of 6 + 8/dbpy

Figure S36: ¹H NMR spectrum (400 MHz, CD_2CI_2) of ([LAICI(THF)][BAr^{CI}₄] + 5 eq **8**).

Figure S37: ¹H NMR spectrum (400 MHz, CD₂Cl₂) of ([LAICI(THF)][BAr^{Cl}₄] + 1 eq dbpy).

4. NMR spectra of pyridinium triflate, [dbpy-H][OTf]

Figure S38: ¹H NMR spectrum (400 MHz, CDCl₃) of ([dbpy-H][OTf]).

Figure S39: ¹³C NMR spectrum (100.5 MHz, CDCl₃) of ([dbpy-H][OTf]).

Figure S40: ¹⁹F NMR spectrum (376.4 MHz, CDCl₃) of ([dbpy-H][OTf]).

Crystallographic Details. Single crystals were mounted on quartz fiber and the X-ray intensity data were collected a Bruker X8 APEX system, using Mo Kα radiation, with the SMART suite of programs.^{S1a} Data were processed and corrected for Lorentz and polarization effects with SAINT^{S1b} and for absorption effects with SABADS.^{S1c} Structural solution and refinement were carried out with the SHELXTL suite of programs.^{S1d} The structure was solved by direct methods and refined for all data by full-matrix least-squares methods on *F*². All non-hydrogen atoms were subjected to anisotropic refinement. The hydrogen atoms were generated geometrically and allowed to ride on their respective parent atoms; they were assigned appropriate isotopic thermal parameters.

	3	4	5	6
CCDC	1471553	1471555	1471554	1471556
Formula	C32 H39 AI Cl2	C96H134Al2F12	C92H98AI2BCI2	C64.36H68.91AIB
	N2	N4O19S4	₀N₄Na	Cl11.82N2O
Formula weight	549.53	2058.26	2056.50	1343.31
Crystal system	Monoclinic	monoclinic	monoclinic	triclinic
Space group	P2(1)/n	P 1 21/c 1	C 1 2/c 1	P -1
a /Å	9.5204(11)	9.7628(8)	16.9979(7)	14.2999(7)
b /Å	25.954(3)	27.367(2)	27.9699(11)	16.7422(9)
c /Å	12.6419(16)	19.2292(14)	20.6231(9)	17.0542(9)
β/°	98.612(5)	101.133(3)	92.6642(16)	104.6772(19)
V / Å ³	3088.5(6)	5040.9(7)	9794.2(7)	3280.3(3)
Z	4	2	4	2
Temperature / K	103	153	153	103
Dc/ g cm ⁻³	1.182	1.356	1.395	1.360
F(000)	1168	2176	4240	1392
Crystal size/ mm	0.20 x 0.16 x	0.140 x 0.160	0.220 x 0.320	0.390 x 0.400
	0.12	x 0.200	x 0.360	x 0.420
θ range/°	2.26 to 29.00	2.48 to 26.48	1.40 to 29.19	1.46 to 27.13°
No. of reflns	35460	60773	31329	106602
collected				
No. of indep reflns	8162	10354	13109	14392
R1 [l >2σ (l)]	0.0619	0.0650	0.0792	0.0510
wR2 (all data)	0.1754	0.1876	0.2458	0.1380
Peak and hole/e $Å^-$	0.324 and -	0.800 and -	1.462 and -	1.628 and -
3	0.349	0.537	1.397	0.817

5. Table S1. Summary of crystallographic data for 3, 4, 5, and 6.

Refrences

S1 (a) SMART version 5.628; Bruker AXS Inc.: Madison, WI, **2001**. (b)SAINT+ version 6.22a; Bruker AXS Inc.: Madison, WI, **2001**. (c) Sheldrick, G. M. SADABS; **1996**. (d) SHELXTL version 5.1; Bruker AXS Inc.: Madison, WI, **1997**.