Electronic Supplementary Information

LiRb₂LaB₂O₆: a new rare earth borate with MOF-5-like topological structure and short UV cut-off edge

Dongdong Xu,^{a,b} Fangfang Zhang,^{a,*} Yanzhou Sun,^a Zhihua Yang,^{a,*} Binghua Lei,^{a,b} Lili

Liu,^{a,b} Shilie Pan^{a,*}

^aKey Laboratory of Functional Materials and Devices for Special Environments, Xinjiang

Technical Institute of Physics & Chemistry, Chinese Academy of Sciences; Xinjiang Key

Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China.

*To whom correspondence should be addressed. Emails: ffzhang@ms.xjb.ac.cn (Fangfang Zhang), zhyang@ms.xjb.ac.cn (Zhihua Yang), slpan@ms.xjb.ac.cn (Shilie Pan). Phone: (86)-991-3838957. Fax: (86)-991-3674558.

CONTENTS

Table S1. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³), and bond valence sums (BVS).

Table S2. Selected bond lengths (Å) and angles (deg.) for LB-1.

Table S3. Anisotropic displacement parameters ($Å^2 \times 10^3$) for LB-1.

Figure S1. Asymmetric unit of selected symmetry-equivalent atoms in LB-1.

Figure S2. PXRD patterns (left), and pictures of LB-1 in air (upper right) and water (lower right).

Figure S3. TG-DSC curves for LB-1.

Figure S4. FT-IR spectroscopy for LB-1.

Figure S5. Band structure for LB-1.

Figure S6. Spatial arrangements of $[BO_3]$ groups in LB-1 (a), Na₃La₂(BO₃)₃ (b) and Na₃La₉O₃(BO₃)₈ (c).

Atoms	x	У	Z	$U(eq)^b$	BVS
Li1	10561(12)	3443(9)	7549(8)	12(2)	2.21
Rb1	2512(1)	888(1)	9559(1)	21(1)	0.93
Rb2	1845(1)	781(1)	5780(1)	24(1)	0.98
Lal	6426(1)	2343(1)	7410(1)	9(1)	2.98
B1	8230(9)	2308(6)	9965(6)	13(1)	2.95
B2	6554(9)	-657(7)	7323(6)	15(1)	2.94
01	9108(5)	3168(4)	6059(3)	15(1)	2.14
O2	9107(5)	2858(4)	8905(4)	16(1)	1.89
03	6298(5)	2230(4)	9913(4)	18(1)	1.79
O4	4819(5)	-88(4)	7434(4)	17(1)	2.13
05	3181(5)	2963(4)	7477(4)	16(1)	2.13
O6	8052(5)	171(4)	7078(4)	21(1)	1.90

Table S1. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³),and bond valence sums (BVS).

 ${}^{b}U(eq)$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Li1-O2	1.838(9)
Li1-O1	1.858(9)
Li1-O5#1	1.955(10)
Li1-O6#2	2.000(10)
Rb1-O4	2.911(4)
Rb1-O1#6	2.970(4)
Rb1-O5	2.980(4)
Rb1-O3	3.056(4)
Rb1-O1#7	3.057(4)
Rb1-O2#8	3.193(4)
Rb1-O3#9	3.211(4)
Rb1-O5#10	3.213(4)
Rb2-O4	2.849(4)
Rb2-O5	2.906(4)
Rb2-O2#6	2.957(4)
Rb2-O2#11	3.045(4)
Rb2-O6#12	3.062(4)
Rb2-O1#8	3.077(4)
Rb2-O6#8	3.118(4)
La1-O5	2.427(4)
La1-O6	2.452(4)
La1-O2	2.505(4)
La1-O1	2.525(4)
La1-O3	2.558(4)
La1-O3#14	2.581(4)

 Table S2.
 Selected bond lengths (Å) and angles (deg.) for LB-1.

2.645(4)
2.674(4)
1.360(7)
1.370(7)
1.400(7)
1.378(7)
1.378(8)
1.379(7)
104.3(5)
121.2(5)
118.3(5)
114.2(5)
123.8(5)
74.0(4)
77.14(11)
66.01(11)
121.67(10)
73.00(11)
139.54(11)
68.85(11)
160.65(11)
93.32(10)
106.81(10)
122.53(11)
119.33(10)
101.18(10)
64.62(10)

O3-Rb1-O2#8	117.03(11)
O1#7-Rb1-O2#8	45.40(10)
O4-Rb1-O3#9	70.07(10)
O1#6-Rb1-O3#9	44.81(10)
O5-Rb1-O3#9	136.08(10)
O3-Rb1-O3#9	98.60(10)
O1#7-Rb1-O3#9	114.75(10)
O2#8-Rb1-O3#9	144.36(10)
B1#9-Rb1-O3#9	25.20(13)
O4-Rb1-O5#10	136.26(11)
O1#6-Rb1-O5#10	124.37(10)
O5-Rb1-O5#10	113.45(5)
O3-Rb1-O5#10	67.35(10)
O1#7-Rb1-O5#10	62.92(10)
O2#8-Rb1-O5#10	95.18(10)
O3#9-Rb1-O5#10	98.01(10)
O4-Rb2-O5	67.79(11)
O4-Rb2-O2#6	79.82(11)
O5-Rb2-O2#6	136.14(11)
O4-Rb2-O2#11	169.79(11)
O5-Rb2-O2#11	105.26(11)
O2#6-Rb2-O2#11	109.86(9)
O4-Rb2-O6#12	116.54(11)
O5-Rb2-O6#12	141.14(11)
O2#6-Rb2-O6#12	79.52(10)
O2#11-Rb2-O6#12	63.72(10)
O4-Rb2-O1#8	130.87(10)

O5-Rb2-O1#8	66.31(10)
O2#6-Rb2-O1#8	124.90(10)
O2#11-Rb2-O1#8	46.47(10)
O6#12-Rb2-O1#8	109.93(10)
O4-Rb2-O6#8	110.77(11)
O5-Rb2-O6#8	100.14(11)
O2#6-Rb2-O6#8	64.03(11)
O2#11-Rb2-O6#8	77.31(11)
O6#12-Rb2-O6#8	112.15(9)
O1#8-Rb2-O6#8	62.30(10)
O5-La1-O6	133.31(13)
O5-La1-O2	132.48(13)
O6-La1-O2	83.62(14)
O5-La1-O1	133.26(13)
O6-La1-O1	80.13(13)
O2-La1-O1	70.93(12)
O5-La1-O1	86.36(13)
O6-La1-O3	97.10(14)
O2-La1-O3	55.78(12)
O1-La1-O3	126.51(12)
O5-La1-O3#14	87.91(13)
O6-La1-O3#14	90.90(13)
O2-La1-O3#14	125.94(12)
O1-La1-O3#14	55.19(12)
O3-La1-O3#14	172.00(9)
O5-La1-O4	78.37(12)
O6-La1-O4	55.64(12)

O2-La1-O4	120.84(12)
O1-La1-O4	129.26(12)
O3-La1-O4	86.06(12)
O3#14-La1-O4	98.26(13)
O5-La1-O4#3	55.72(12)
O6-La1-O4#3	169.70(12)
O2-La1-O4#3	91.94(13)
O1-La1-O4#3	89.64(12)
O3-La1-O4#3	87.99(13)
O3#14-La1-O4#3	84.17(12)
O4-La1-O4#3	133.99(2)
O1#10-B1-O2	124.5(5)
O1#10-B1-O3	118.0(5)
O2-B1-O3	117.5(5)
O5#6-B2-O6	119.6(5)
O5#6-B2-O4	120.6(5)
O6-B2-O4	119.8(5)

Symmetry transformations used to generate equivalent atoms:

Atoms	U11	U22	U33	U23	U13	U12
Li1	13(4)	12(4)	11(4)	0(3)	1(3)	-2(3)
Rb1	26(1)	17(1)	21(1)	-1(1)	8(1)	0(1)
Rb2	28(1)	16(1)	27(1)	-1(1)	-12(1)	1(1)
Lal	8(1)	9(1)	11(1)	0(1)	0(1)	0(1)
B1	14(3)	16(3)	11(3)	-4(2)	1(2)	-1(2)
B2	17(3)	15(3)	12(3)	0(2)	-1(2)	2(2)
01	14(2)	19(2)	11(2)	-2(2)	-3(1)	-3(2)
O2	17(2)	18(2)	14(2)	3(2)	2(2)	-6(2)
O3	15(2)	28(2)	12(2)	0(2)	-1(2)	-4(2)
O4	15(2)	13(2)	24(2)	1(2)	2(2)	2(2)
05	10(2)	11(2)	28(2)	1(2)	0(2)	2(2)
O6	10(2)	15(2)	37(2)	4(2)	5()	-3(2)

Table S3. Anisotropic displacement parameters ($Å^2 \times 10^3$) for LB-1.

Figure S1. Asymmetric unit of selected symmetry-equivalent atoms in LB-1, showing the linkages and coordination spheres with 50 % thermal ellipsoids and atom labels. Symmetry codes: (#1) x, 1/2 - y, 0.5 + 1/2; (#2) - 1 + x, 1/2 - y, 1/2 + z; (#3) - 1 + x, y, z; (#4) 1 - x, -1/2 + y, 3/2 - z; (#5) - 1 + x, 1/2 - y; -1/2 + z; (#6) 1 - x, -y, 2 - z; (#7) x, 1/2 - y, -0.5 + z; (#8) 1 - x, 1/2 + y, 3/2 - z; (#9) 1 + x, y, z; (#10) 1 - x, -y, 1 - z; (#11) 2 - x, 1/2 + y, 3/2 - z.

Figure S4. FT-IR spectroscopy for LB-1.

Figure S5. Band structure for LB-1.

Figure S6. Spatial arrangements of the $[BO_3]$ groups in LB-1 (a), $Na_3La_2(BO_3)_3$ (b), and

Na₃La₉O₃(BO₃)₈ (c).