

Electronic Supporting Information

Water and catalytic isomerization of linear allylic alcohols by $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2]^+$ (PTA = 1,3,5-triaza-7-phosphaadamantane)

Franco Scalambra,^a Manuel Serrano-Ruiz,^b Antonio Romerosa^a

Área de Química Inorgánica-CIESOL, Facultad de Ciencias, Universidad de Almería, Almería, Spain; Fax: +34 950015008; E-mail: romerosa@ual.es

Contents

1. Materials and methods

- 1.1. Synthesis of $[\text{RuCp}(\text{OH}_2)(\text{PTA})_2](\text{CF}_3\text{SO}_3) \cdot 3.5\text{H}_2\text{O}$ (**1(CF₃SO₃)·3.5H₂O**)
- 1.2. Synthesis of $[\text{RuCp}(\text{OH}_2)(\text{PTA})_2](\text{CF}_3\text{SO}_3)$ (**1(CF₃SO₃)**)
- 1.3. Stability of **1(CF₃SO₃)·3.5H₂O** and **1(CF₃SO₃)** under air in solid state and water solution.
- 1.4. Stability of **1(CF₃SO₃)·3.5H₂O** and **1(CF₃SO₃)** under N₂ and air atmosphere.
- 1.5. Reactivity of **1(CF₃SO₃)·3.5H₂O** with NaCl
- 1.6. General procedure for catalytic isomerisation of allylic alcohols

2. Characterization of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3) \cdot 3\text{H}_2\text{O}$

2.1. NMR spectra of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3) \cdot 3\text{H}_2\text{O}$

Figure S1: ^1H NMR (300.13 MHz, 22 °C, D₂O) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3) \cdot 3.5\text{H}_2\text{O}$

Figure S2: $^{13}\text{C}\{^1\text{H}\}$ NMR (75.47 MHz, 22 °C, D₂O) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3) \cdot 3.5\text{H}_2\text{O}$

Figure S3: $^{31}\text{P}\{^1\text{H}\}$ NMR (121.49 MHz, 22 °C, D₂O) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3) \cdot 3.5\text{H}_2\text{O}$

Figure S4: $^{19}\text{F}\{^1\text{H}\}$ NMR (282.40 MHz, 22 °C, D₂O) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3) \cdot 3\text{H}_2\text{O}$

Figure S5: $^{31}\text{P}\{^1\text{H}\}$ NMR (121.49 MHz, 22 °C, CD₂Cl₂) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3) \cdot 3.5\text{H}_2\text{O}$

Figure S6: $^{19}\text{F}\{^1\text{H}\}$ NMR (282.40 MHz, 22 °C, CD₂Cl₂) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3) \cdot 3\text{H}_2\text{O}$

2.2. IR spectrum of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3\text{H}_2\text{O}$

Figure S7: IR (KBr) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3\text{H}_2\text{O}$

3. References

1. Materials and methods

All chemicals were of reagent grade and, unless otherwise stated, were used as received from commercial suppliers. Likewise all reactions were carried out in a pure argon atmosphere by using standard Schlenk-tube techniques. Water was deoxygenated prior to use and organic solvents have been dried through standard methods. The complex $[\text{RuClCp}(\text{PTA})_2]$ was prepared as described in the literature.¹ ^1H and $^{13}\text{C}\{^1\text{H}\}$ NMR spectra were recorded on a Bruker DRX300 spectrometer operating at 300.13 MHz (^1H) and 75.47 (^{13}C), respectively. Peak positions are relative to tetramethylsilane and were calibrated against the residual solvent resonance (^1H) or the deuterated solvent multiplet (^{13}C). $^{31}\text{P}\{^1\text{H}\}$ and $^{19}\text{F}\{^1\text{H}\}$ NMR spectra were recorded on the same instrument operating at 121.49 and 282.40 MHz, respectively. Chemical shifts for $^{31}\text{P}\{^1\text{H}\}$ NMR were measured relative to external 85% H_3PO_4 and for $^{19}\text{F}\{^1\text{H}\}$ NMR to CFCl_3 with downfield values taken as positive in both cases. All NMR spectra were obtained at 25 °C. Infrared spectra were recorded as KBr disks using a Bruker Vertex 70 FT-IR spectrometer. Elemental analyses (C, H, N, S) were performed on a Fisons Instrument EA1108 elemental analyser. Gas chromatographic measurements were made on a Shimadzu GC-2010 Plus using a Supelco SP-2330 30 m, 0.25 mm, 0.2 μm column and flame ionization detector.

1.1 Synthesis of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3.5\text{H}_2\text{O}$ (1($\text{CF}_3\text{SO}_3\cdot 3.5\text{H}_2\text{O}$)).

Into a solution containing complex $[\text{RuClCp}(\text{PTA})_2]$ (1.0 g, 1.94 mmol) dissolved in 50 mL of water was added a solution of AgCF_3SO_3 (493.5 mg, 1.92 mmol) in 20 mL of water. The resulting mixture was sonicated for 2 h at room temperature and then the precipitated AgCl was filtered through celite. The solvent was removed to dryness giving rise to an orange powder, which was washed with Et_2O (3 x 30 mL) and dried under vacuum. Brown-orange crystals of the complex suitable for single crystal X-ray diffraction grew from an aqueous 1.3 M solution after three days. Crystals yield: 1.17 g, 85%. $\text{S}_{25,\text{H}_2\text{O}}$ (g/mL): 2. Elemental analysis for powder sample $\text{C}_{18}\text{H}_{38}\text{F}_3\text{N}_6\text{O}_{7.5}\text{P}_2\text{RuS}$ ($710.6 \text{ g}\cdot\text{mol}^{-1}$): Found C: 30.21; H 5.43; N 11.50; calcd. C 30.42; H 5.39; N 11.82. IR (KBr, cm^{-1}): 3082 (m); 2925 (m), 2896 (m); 1446 (m); 1412 (m), 1036 (s), 1014 (s), 972 (s); 1281 – 1260 (s), 1171 (s), 1098 (m); 948 (m), 893 (m), 803 (m), 644 (m); 575 (s). ^1H NMR (300.13 MHz, 22 °C, D_2O): δ 4.06 (m, NCH_2P , 12H), 4.53 (m, NCH_2N , 12 H), 4.71 (s, Cp, 5H). $^{13}\text{C}\{^1\text{H}\}$ RMN (75.467 MHz, 22 °C, D_2O): δ 53.70 (t, $^1J_{\text{CP}} = 8.4$ Hz, NCH_2P), 70.61 (s, NCH_2N), 75.45 (s, Cp). $^{31}\text{P}\{^1\text{H}\}$ NMR (121.49 MHz, 22 °C, D_2O): δ -24.75 (s). $^{19}\text{F}\{^1\text{H}\}$ NMR (282.40 MHz, 22 °C, D_2O): δ -78.908 (s).

1.2 Synthesis of $[\text{RuCp}(\text{H}_2\text{O}-\kappa\text{O})(\text{PTA})_2](\text{CF}_3\text{SO}_3)$ (**1(CF₃SO₃)**).

The complex **1(CF₃SO₃)·3.5H₂O** (100 mg, 0.14 mmol) was dissolved in 10 mL of dry EtOH and then the solvent fully eliminated. The dissolution and evaporation process was repeated with the obtained powder for 3 more times. The final resulting yellow powder was stored under N_2 .

1.3 Stability of **1(CF₃SO₃)·3.5H₂O** and **1(CF₃SO₃)** under air in solid state and water solution.

Crystalline **1(CF₃SO₃)·3.5H₂O** (7 mg) and **1(CF₃SO₃)** were kept under air at room temperature, the ³¹P{¹H} NMR (D₂O) showed that the compound decomposes slowly under this conditions, achieving the total decomposition after 10 days. The stability in water solution was evaluated by dissolution of crystals of **1(CF₃SO₃)·3.5H₂O** (7 mg) and powder **1(CF₃SO₃)** (7 mg) in 0.5 mL of D₂O, the obtained solution cooled over ice and then air was bubbled during 2 min. The complete decomposition of the complex was observed before 3 days at room temperature and 2 h at 80 °C. For both experiments the unique final compound observed by ³¹P{¹H} NMR was O=PTA.

1.4 Stability of **1(CF₃SO₃)·3.5H₂O and **1(CF₃SO₃)** under N₂ and air atmosphere.**

In 5 mm NMR tubes the complex **1(CF₃SO₃)3.5H₂O** (14 mg, 0.02 mmol) and **1(CF₃SO₃)** (13 mg, 0.02 mmol) were dissolved in 0.5 mL of D₂O under N₂. The NMR tubes were cooled at 5 °C and air bubbled for 5 minutes. The solutions were checked by ³¹P{¹H} NMR at room temperature showing that complex **1** is stable in water solution under N₂ for one month but under air was decomposed in 1 hour, being the main signal observed by ³¹P{¹H} NMR due to PTA=O.

1.5 Reactivity of **1(CF₃SO₃)·3.5H₂O with NaCl**

Crystals of **1(CF₃SO₃)·3.5H₂O** (14 mg, 0.02 mmol) were dissolved in 0.5 mL of D₂O into a 5 mm NMR tube and then NaCl (1.2 mg, 0.02 mmol) was added. After 5 min the ³¹P{¹H} NMR showed a singlet that only could be ascribable to [RuClCp(PTA)₂], which was the unique remaining signal after 2 h.

1.6 General procedure for catalytic isomerisation of allylic alcohols

In a typical reaction a variable volume of the studied substrate (or a mixture of substrates) was introduced into a solution of **1**(CF₃SO₃)·3.5H₂O (9.7 mg, 0.15 mmol) in 6 mL of water and/or MeOH. Experiments were also preformed using the substrate as solvent without and with variable amounts of water. In this case the water/allylic alcohol mixtures were composed using calibrated micropipettes. The preparation was made under air and under N₂, in this last case the used solvent was previously bubbled with N₂. The mixture was kept at desired reaction temperature in a sealed tube and stirred regularly (1000 rpm). At the chosen time the reaction was cooled at room temperature and extracted with CHCl₃ (5 x 1.5 mL for 1 mol% catalyst; 5 x 3 mL for 0.1 mol% catalyst). The collected organic phases were passed through a column (5 x 50 mm) packed with 60 mesh silica gel. The conversion of allylic alcohol into ketone was determined by gas chromatography. The identity of the ketones was assessed by comparison with commercially available pure samples. Reactions were checked by ³¹P{¹H} NMR by extracting some aliquots at regular reaction time.

1.7 Catalytic isomerisation of allylic alcohols with **1(CF₃SO₃) in presence of NaCl.**

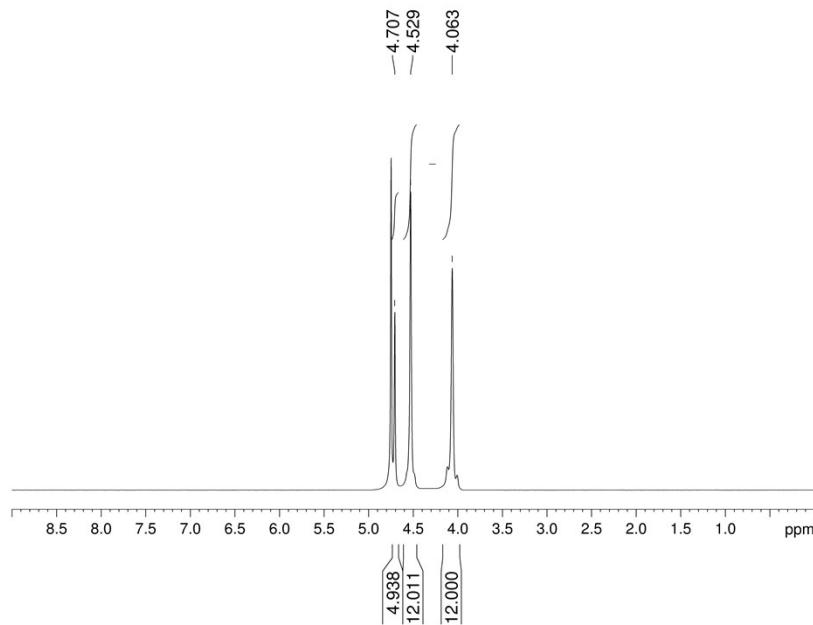
Using the general procedure indicated previously the substrates were catalysed in water with **1**(CF₃SO₃) in presence of 5 eq. of NaCl. The observed isomerization conversions were similar to that produced by the complex [RuClCp(PTA)₂] in presence of NaCl.²

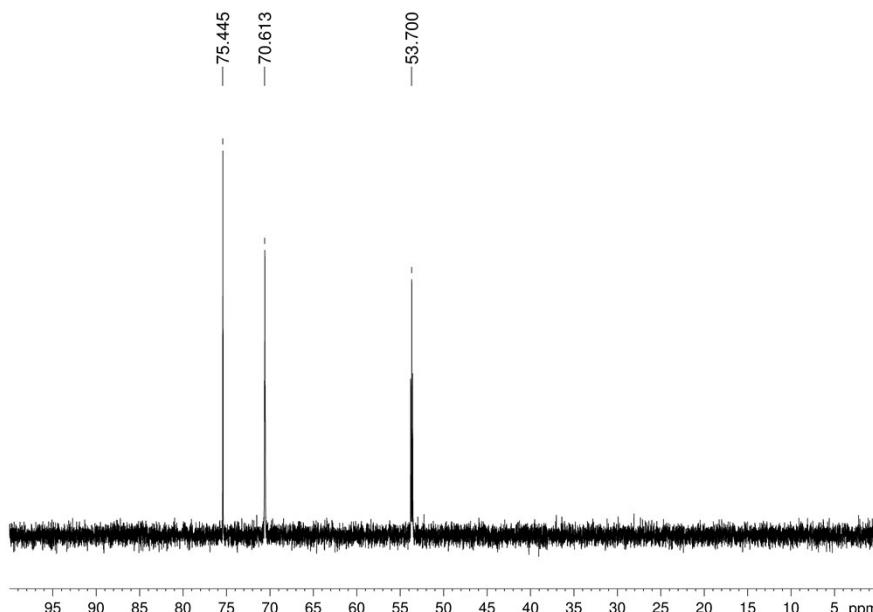
1.8 X-ray structure Determination.

Data of compound **1**(CF₃SO₃)·3.5H₂O was collected on an Oxford Diffraction Xcalibur diffractometer (Rutherford Appleton Laboratory, Oxfordshire, U.K.), using monochromated Mo

$\text{K}\alpha$ radiation ($\lambda = 0.7107 \text{ \AA}$) at 100 K. The crystal parameters and other experimental details of the data collections are summarized in Table 1. The structures were solved by direct methods SHEL97³ and refined by full-matrix least squares methods with SHEL-XTL³ and refined by least-squares procedures on F^2 and final geometrical calculations and graphical manipulations were carried out with the SHELXS-XTL package.³ All the non-hydrogen non-disordered atoms were refined with anisotropic atomic displacement parameters. Three 0.5 disordered (refined isotropically) water molecules were found. All hydrogen atoms, except for disordered water molecules, were included in calculated positions and refined using a riding model. Crystallographic data for the structure in this paper has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication. CCDC 1511862.

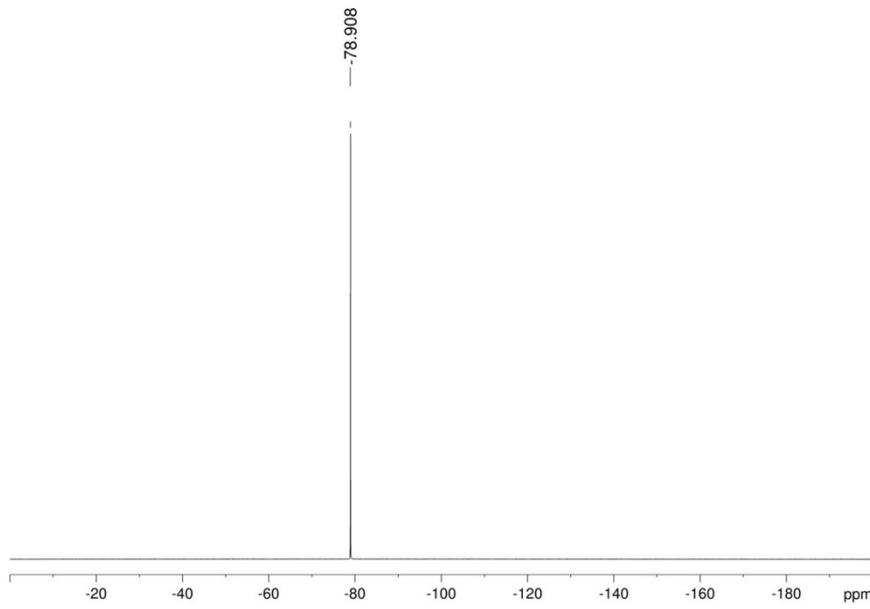
Table S1. Selected Crystallographic Data for **1**(CF₃SO₃)·3.5H₂O

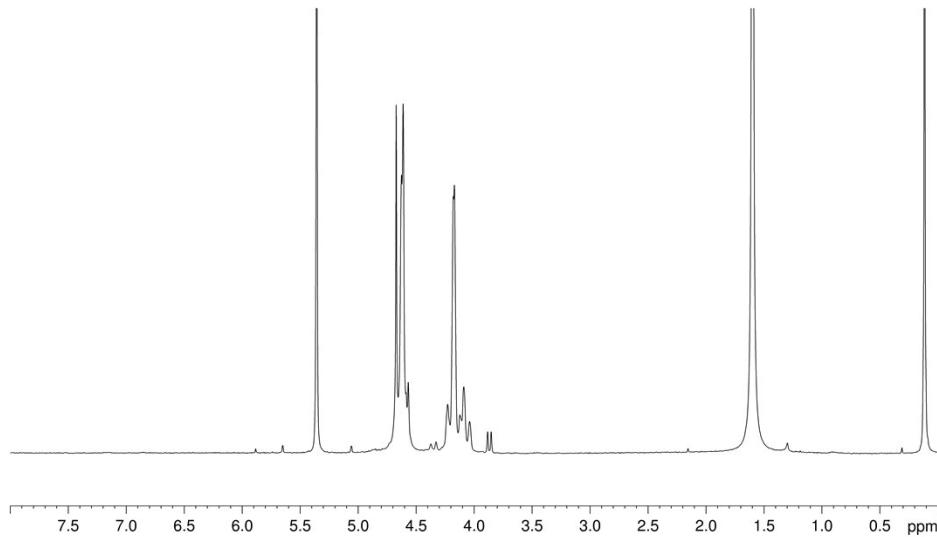

1(CF₃SO₃)·3.5H₂O

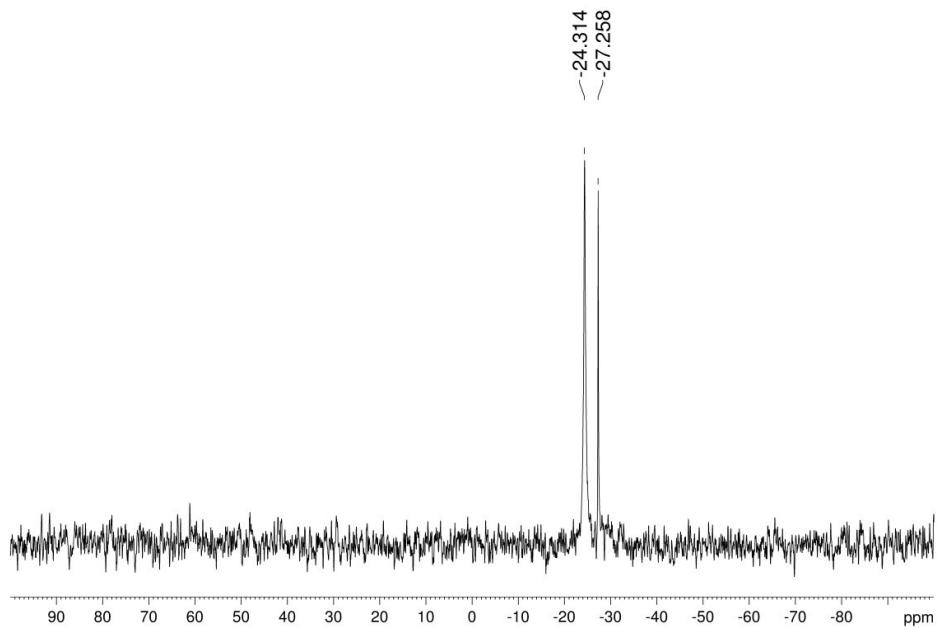

Empirical formula	$C_{18}H_{38}F_3N_6O_{7.50}P_2RuS$
Formula weight	710.61
Crystal system	Triclinic
Space group	P-1
a [Å]	9.100(5)
b [Å]	10.706(5)
c [Å]	15.027(5)
α [°]	76.368(5)
β [°]	80.526(5)
γ [°]	78.260(5)
Volume [Å ³]	1382.5(11)
Z	2
Goodness of fit on F^2	1.195
$\rho_{\text{calcd.}}$ [mg·m ⁻³]	1.707
μ [mm ⁻¹]	0.830
Data/Parameters	6954/362
R1 [I>2σ(I)] (all)	0.0224 (0.0257)
wR2 [I>2σ(I)] (all)	0.0531 (0.0549)
$\Delta\rho$ [e·Å ³]	0.066; -0.456

2. Characterization of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3\text{H}_2\text{O}$

2.1 NMR spectra of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3\text{H}_2\text{O}$


Figure S1: ^1H NMR (300.13 MHz, 22 °C, D_2O) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3\text{H}_2\text{O}$


Figure S2: $^{13}\text{C}\{^1\text{H}\}$ NMR (75.47 MHz, 22 °C, D_2O) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3\text{H}_2\text{O}$


Figure S3: $^{31}\text{P}\{\text{H}\}$ NMR (121.49 MHz, 22 °C, D_2O) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa\text{O})(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3\text{H}_2\text{O}$

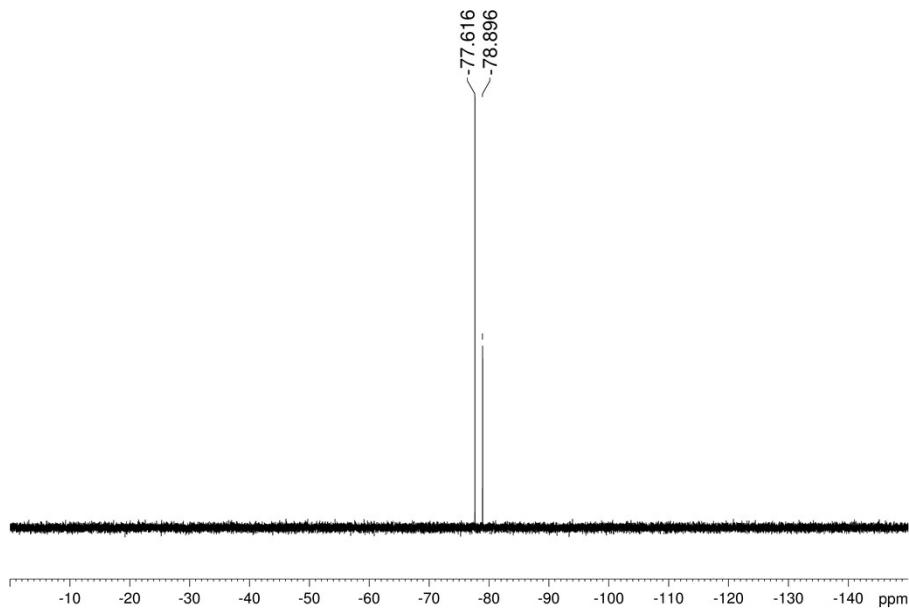

Figure S4: $^{19}\text{F}\{\text{H}\}$ NMR (282.40 MHz, 22 °C, D_2O) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa\text{O})(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3\text{H}_2\text{O}$

Figure S5: ^1H NMR (300.13 MHz, 22 °C, CD_2Cl_2) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa\text{O})(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3.5\text{H}_2\text{O}$

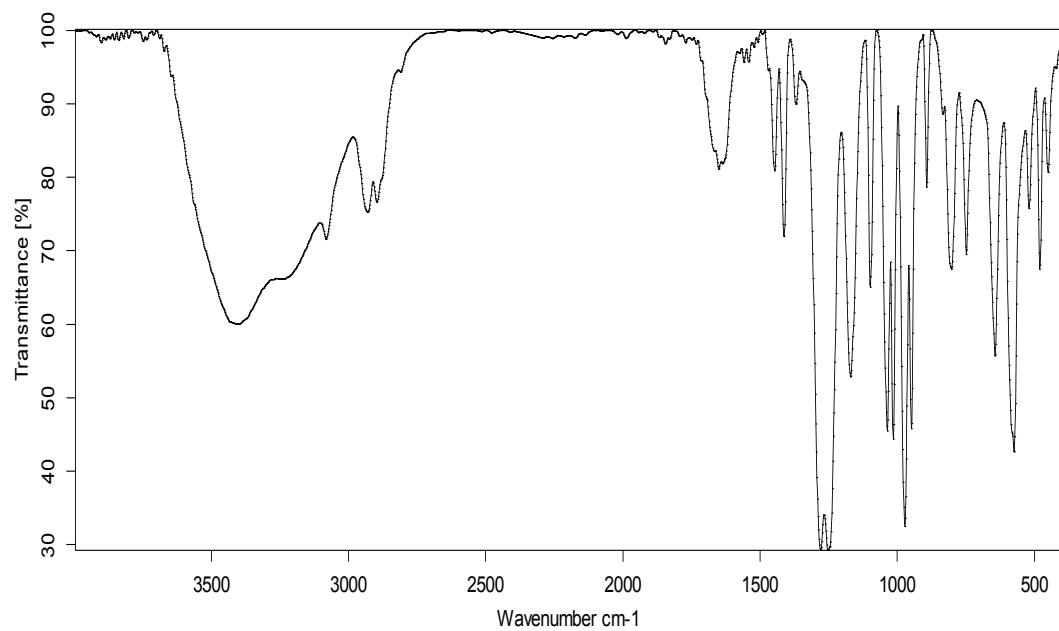


Figure S6: ^{31}P NMR (121.49 MHz, 22 °C, CD_2Cl_2) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3\text{H}_2\text{O}$

Figure S7: $^{19}\text{F}\{^1\text{H}\}$ NMR (282.40 MHz, 22 °C, CD_2Cl_2) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3\text{H}_2\text{O}$

2.2 IR spectrum of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3\text{H}_2\text{O}$

Figure S8: IR (KBr) of $[\text{RuCp}(\text{H}_2\text{O}-\kappa O)(\text{PTA})_2](\text{CF}_3\text{SO}_3)\cdot 3\text{H}_2\text{O}$

3. References

- 1 (a) A. Romerosa, T. Campos-Malpartida, C. Lidlissi, M. Saoud, M. Serrano-Ruiz, M. Peruzzini, J. A. Garrido-Cárdenas and F. García-Maroto, *Inorg. Chem.*, 2006, **45**, 1289; (b) D. N. Akbayeva, L. Gonsalvi, W. Oberhauser, M. Peruzzini, F. Vizza, P. Brüggeller, A. Romerosa, G. Sava and A. Bergamo, *Chem. Comm.*, **2003**, 264.
- 2 M. Serrano-Ruiz, M.; P. Lorenzo-Luis, A. Romerosa and A. Mena-Cruz, *Dalton Trans.*, 2013, **42**, 7622.
- 3 G.M. Sheldrick, SHELXTL Version 6.14; Bruker-AXS Madison, WI, 2003.