Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Optical Properties of Trinuclear Metal Chalcogenolate Complexes – Room Temperature NIR Fluorescence in [Cu₂Ti(SPh)₆(PPh₃)₂]

Michael Kühn,^b Sergei Lebedkin,^a Florian Weigend^{*,ab} and Andreas Eichhöfer^{*,acd}

^a Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Campus Nord,

Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Tel. 49-(0)721-608-26371

Fax: 49-(0)721-608-26368

e-mail: <u>andreas.eichhoefer@kit.edu</u>

^b Institut für Physikalische Chemie, Abteilung für Theoretische Chemie, Karlsruher

Institut für Technologie (KIT), Campus Süd, Fritz-Haber-Weg 2, 76131 Karlsruhe,

Germany

^c Lehn Institute of Functional Materials, Sun Yat-Sen University, Guangzhou 510275, China

^d Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1, 76344

Eggenstein-Leopoldshafen, Germany

Content

Figure S1. Molecular structure of 1.

Figure S2. Molecular structure of 2.

Table S1: Crystallographic data for 1 and 2.

Table S2: Selected bond distances and angles of 1 - 4.

Table S3. Observed and calculated (TDDFT) electronic excitation energies in 1 - 4.

Tables S4 – 7: Calculated singlet excitation energies and oscillator strengths up to 4.5 eV for

1, 2, 3 and 4.

Figure S3. Comparison of measured and calculated electronic spectra of 2 and 3.

Figure S4. Comparison of UV-vis absorption spectra of 1, 2 and 3 measured in

dichloromethane and as powdered crystals in mineral oil.

Figure S5. Calculated molecular orbital diagrams of 1 - 4.

Figure S6. Photoluminescence excitation and emission spectra of 1 - 3 at different temperatures.

Figure S7. Photoluminescence excitation and emission spectra of 4 at different temperatures.

Figure S8. Photoluminescence excitation and emission spectra of 4 in toluene.

Figure S9. Photoluminescence excitation and emission spectra of 1 at different excitation wavelengths.

Table S8. Calculated lowest triplet (1 - 3) and singlet (4) excitation and emission energies for 1, 2, 3 and 4.

 Table S9. Experimental and calculated atom distances for ground and excited state structures of 1, 2, 3 and 4.

Figures S10 – 12. Measured and simulated X–ray powder pattern for 1, 2 and 3.

Figure S13. Comparison of the calculated excitation spectra for the experimental and optimized structures of 1 - 4.

List of Compounds

 $[Cu_2Sn(SePh)_6(PPh_3)_2] (1)$ [Ag_2Sn(SPh)_6(PPh_3)_2] (2) [Cu_2Sn(SPh)_6(PPh_3)_2] (3) [Cu_2Ti(SPh)_6(PPh_3)_2] (4)

Figure S1. Molecular structure of $[Cu_2Sn(SePh)_6(PPh_3)_2]$ (1) (disordered C and all H atoms are omitted for clarity). Thermal ellipsoid plots at 50 % probability. For selected bond lengths and angles see Table S2. Symmetry transformation for generation of equivalent atoms: '-y, x-y, z; ''-x, -y, -z; ''' x-y, x, -z; '''' -x+y, -x, z; '''' y, -x+y, -z.

Figure S2. Molecular structure of $[Ag_2Sn(SPh)_6(PPh_3)_2]$ (**2**) (H atoms are omitted for clarity). Thermal ellipsoid plots at 50 % probability. For selected bond lengths and angles see Table S2. Symmetry transformation for generation of equivalent atoms: 'y, -x+y, -z; ''-y, x-y, z; '''-x, -y, -z; '''' x-y, x, -z; ''''' -x+y, -x, z.

	1	2
sum formula	$C_{72}H_{60}Cu_2P_2Se_6Sn$	$C_{72}H_{60}Ag_2P_2S_6Sn$
fw [g/mol]	1706.67	1513.93
crystal system	trigonal	trigonal
space group	R3	R3
Cell <i>a</i> [Å]	13.4969(4)	13.2373(19)
С	33.8779(11)	34.644(7)
α [°]		
β		
γ		
$V[A^3]$	5334.6(4)	5257.2(18)
Ζ	3	3
<i>T</i> [K]	180(2)	180(2)
$d_c [\mathrm{g}\mathrm{cm}^{-3}]$	1.591	1.435
$\mu(\lambda) [\mathrm{mm}^{-1}]$	4.087	1.170
<i>F</i> [000]	2502	2286
2θ _{max} [°]	56	66
meas reflns	6671	17659
unique reflns	2831	4174
$R_{\rm int}$	0.0384	0.0553
reflns with $I > 2\sigma(I)$.	2300	3294
refined params	132	162
$R1(I > 2\sigma(I))^{a}$	0.0367	0.0298
wR2(all data) ^b	0.0983	0.0689

 $\label{eq:solution} \textbf{Table S1}. \ Crystallographic \ data \ for \ [Cu_2Sn(SePh)_6(PPh_3)_2] \ \textbf{(1)} \ and \ [Ag_2Sn(SPh)_6(PPh_3)_2] \ \textbf{(2)}.$

	М	М'	Е	M–E–M'[°]	M–E [pm]	M'–E [pm]	M–M' [pm]
3	Cu ⁺	Sn ⁴⁺	S	78.15(6)	242.1(2)	256.57(17)	314.52(16)
1	Cu ⁺	Sn ⁴⁺	Se	76.18(2)	249.86(5)	268.97(3)	320.4
2	Ag ⁺	Sn^{4+}	S	81.85(2)	265.22(6)	256.44(5)	341.8
4	Cu ⁺	Ti ⁴⁺	S	70.54(13), 70.88(12)	234.6(3), 235.4(4)	242.8(4), 248.6(4)	276.2(5), 280.4(5)

 Table S2. Selected bond distances [pm] and angles [°] of $[Cu_2Sn(SePh)_6(PPh_3)_2]$ (1),

 $[Ag_2Sn(SPh)_6(PPh_3)_2]$ (2), $[Cu_2Sn(SPh)_6(PPh_3)_2]$ (3) ^[1] and $[Cu_2Ti(SPh)_6(PPh_3)_2]$ (4).^[2]

Table S3. Observed and calculated (TDDFT) electronic excitation energies in $[Cu_2Sn(SePh)_6(PPh_3)_2]$ (1), $[Ag_2Sn(SPh)_6(PPh_3)_2]$ (2), $[Cu_2Sn(SPh)_6(PPh_3)_2]$ (3) and $[Cu_2Ti(SPh)_6(PPh_3)_2]$ (4).^{*a,b*}

	exp.			theory
	ΔE	ΔE	f	character
1		2.39	0.0050	$e_{\rm u}({\rm HOMO-2}) \rightarrow a_{\rm g}({\rm LUMO})$
	2.57	2.60	0.1852	$a_{\rm u}({\rm HOMO-1}) \rightarrow a_{\rm g}({\rm LUMO})$
	3.65	3.52	0.2688	$e_{u}(HOMO-5) \rightarrow a_{g}(LUMO)$
2		2.04	0.0100	
2	a a 7	2.94	0.0186	$e_{u}(HOMO-2) \rightarrow a_{g}(LOMO)$
	2.97	3.41	0.2047	$a_{u}(HOMO-1) \rightarrow a_{g}(LUMO)$
	3.84	3.73	0.3538	$e_{\rm u}({\rm HOMO}-5) \rightarrow a_{\rm g}({\rm LUMO})$
3		2.68	0.0046	$e_{u}(HOMO-2) \rightarrow a_{c}(LUMO)$
•	2.97	2.80	0.1833	$a_{\rm u}({\rm HOMO-1}) \rightarrow a_{\rm g}({\rm LUMO})$
	3.79	3.62	0.2888	$e_{\rm u}({\rm HOMO}-5) \rightarrow a_{\rm g}({\rm LOMO})$
4	1.43	1.59	2.6·10 ⁻⁵	$a(HOMO) \rightarrow e(LUMO)$
		2.01	0.0086	$0.5 e(HOMO) \rightarrow e(LUMO+1)$
		2.01	0.0000	$0.5 a(HOMO-1) \rightarrow a(LUMO)$
	1.96	2.19	0.0757	$0.5 e(HOMO) \rightarrow e(LUMO+1)$
		2 24		$\frac{1}{2} = \frac{1}{2} = \frac{1}$
	2 4 2	2.24	0.0075	$e(10 10 -2) \rightarrow e(10 10)$
	2.43	2.5/	0.0489	$e(HUMU-3) \rightarrow e(LUMU)$
		2.70	0.0142	$e(HOMO-5) \rightarrow e(LUMO)$

^{*a*} Parameters: transition energy ΔE [eV], corresponding oscillator strength *f*. For the spectra, see Figures 1 and 2 in the main paper.

^{*b*} in the case of *e* representations the notation of the HOMOs / LUMOs counts for two degenerate orbitals.

Table S4. Calculated (B3LYP/def2-SV(P)) singlet excitation energies [eV] and oscillator strengths up to 4.5 eV for the X-ray structure parameters of $[Cu_2Sn(SePh)(PPh_3)_2]$ (1).

Exc. energy	oscillator strength
2.3914	0.00250952
2 3914	0 00250952
$2 \cdot 0 \cdot 1 = 0$	0.10510005
2.6034	0.18519295
3.5169	0.13435884
3.5169	0.13435884
3 7184	0 0203584
2 0262	0.00202051
5.0505	0.00292034
3.8525	0.00319653
3.8525	0.00319653
3.8818	0.02412452
3 9745	0 00309808
2 0745	0.00200000
5.9/45	0.00309808
4.0454	0.01376861
4.0454	0.01376861
4.0704	0.0085812
4 0704	0 0085812
1.0710	0.01220462
4.0/10	0.01320403
4.1166	0.01336919
4.1166	0.01336919
4.1175	0.00365227
4.1273	0.01462059
1 1072	0 01462050
4.1273	0.01402039
4.1414	0.054/5/26
4.2449	0.00000144
4.297	0.00462648
4.3248	0.01417489
4 328	0 0017858
1 328	0 0017858
4.0200	0.0017030
4.3323	0.034/8801
4.3323	0.03478801
4.3335	0.00012091
4.3424	0.00330516
4 3424	0 00330516
1.0121	0.01016642
4.3431	0.01010043
4.3453	0.06218534
4.3691	0.01527335
4.3691	0.01527335
4.3931	0.0003627
4 4136	0 01677058
1 1136	0 01677058
	0.01704040
4.4366	U.UI/24249
4.4389	0.04469734
4.4389	0.04469734
4.4671	0.01891963
4.4671	0.01891963
4 4796	0 00002264
ч. ч / УО	0.00002204

Table S5. Calculated (B3LYP/def2-SV(P)) singlet excitation energies [eV] and oscillator
strengths up to 4.5 eV for the X-ray structure parameters of $[Ag_2Sn(SePh)(PPh_3)_2]$ (2).

Exc. energy	oscillator strength
2.9422	0.0092529
2.9422	0.0092529
3.4085	0.2046865
3.7282	0.17685693
3.7282	0.17685693
3.7452	0.00108085
3.7561	0.00620501
3.7561	0.00620501
3.768	0.00188794
3.8507	0.0014759
4.021	0.00026169
4.0339	0.00472121
4.0339	0.00472121
4.0574	0.07494474
4.0717	0.00184009
4.0717	0.00184009
4.1916	0.00271238
4.1927	0.00006686
4.1927	0.00006686
4.1964	0.0006401
4.2238	0.00407915
4.2238	0.00407915
4.2425	0.03490168
4.2425	0.03490168
4.2898	0.02438271
4.2898	0.02438271
4.2927	0.00381271
4.3525	0.01512808
4.3616	0.00065502
4.3616	0.00065502
4.3724	0.00385374
4.3724	0.00385374
4.3815	0.00349968

Table S6. Calculated (B3LYP/def2-SV(P)) singlet excitation energies [eV] and oscillatorstrengths up to 4.5 eV for the X-ray structure parameters of $[Cu_2Sn(SPh)(PPh_3)_2]$ (3).

Exc. energy	oscillator strength
2.6833	0.00233166
2.6833	0.00233166
2.7978	0.18325601
3.6199	0.1444532
3.6199	0.1444532
3.8829	0.01772761
3.9516	0.00090125
3.9704	0.00456294
3.9704	0.00456294
4.0125	0.04008712
4.0165	0.03899321
4.0165	0.03899321
4.0928	0.00401359
4.0928	0.00401359
4.1678	0.03565834
4.1678	0.03565834
4.1872	0.00488577
4.1872	0.00488577
4.2008	0.00093333
4.2088	0.0123517
4.2121	0.01302054
4.2121	0.01302054
4.2263	0.05068478
4.2391	0.01663516
4.3983	0.00253231
4.4008	0.00238319
4.4008	0.00238319
4.4042	0.00529952
4.4142	0.00076352
4.4142	0.00076352
4.4529	0.00232241
4.4566	0.01283008
4.4566	0.01283008

Table S7. Calculated (B3LYP/def2-SV(P)) singlet excitation energies [eV] and oscillator strengths up to 4.5 eV for the X-ray structure parameters of $[Cu_2Ti(SPh)(PPh_3)_2]$ (4).

Exc. energy	oscillator strength
1.5900	0.00001306
1.5900	0.00001306
1.9999	0.00196596
2.0067	0.00860254
2.0531	0.00175833
2.0531	0.00175833
2.1861	0.07571081
2.2384	0.00745552
2.3023	0.00105309
2.3023	0.00105309
2.3073	0.00129176
2.3857	0.00317842
2.3857	0.00317842
2.4534	0.00081384
2.4808	0.00083617
2.4808	0.00083617
2.5061	0.00033623
2 5061	0 00033623
2 5684	0 04886358
2 6229	0 00110697
2 6229	0 00110697
2 6997	0 01414943
2 7258	0 0000888
2 7258	0 0000888
2 8666	0 00615146
2.8666	0.00615146
2 8844	0.00010140
3 0//1	0 00075305
3 0441	0.00075305
3 0799	0.00073303
3 1 1 7 9	0.00144029
3.1479 2.1470	0.00014252
3.1479	0.00014252
3.2101	0.00139342
2.2194	0.00003153
3.2194	0.00003133
3.229J	0.00000230
3.2304	0.04555494
2.2304	0.04555494
2.3194	0.01194420
J.J⊥94 J /J1⊑	0.01194420
2.4313 2 5000	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
J.JOZZ 3 5077	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
3.30ZZ	0.00010/31 0.00022151
3.3989 3 E000	0.00023151
3.3989	0.00023131
3.0U32 2.601	0.00096233
J.041	0.UUT33010

3.621	0.00153616
3.6265	0.00322513
3.6265	0.00322513
3.6373	0.02057443
3.6373	0.02057443
3 6681	0 04441775
3 6958	0 00881697
2.050	0.00001007
3.6958	0.0088169/
3.7018	0.0320492
3.8052	0.00009446
3.809	0.00015784
3.809	0.00015784
3.8179	0.00118851
3.8241	0.0004506
3.8592	0.01807902
3 8688	0 00673125
3 9699	0.00673125
3.0000	0.00073123
3.9126	0.02630274
3.915	0.0004005/
3.915	0.00040057
3.9182	0.00032274
3.9287	0.01005998
3.9287	0.01005998
3.9352	0.02482826
3.9508	0.0144786
3 981	0 00000747
2 0020	0.00024067
2.9939	0.00034907
3.9939	0.00034967
4.01/2	0.00006153
4.0241	0.00245443
4.0286	0.00207042
4.0286	0.00207042
4.0367	0.00002137
4.0367	0.00002137
4.0402	0.00010219
4.0559	0.00163921
4.0607	0.00006306
1 0607	0 00006306
4.0646	0.06056736
4.0040	0.00030730
4.0732	0.00413487
4.0785	0.00114617
4.0785	0.00114617
4.1114	0.02604674
4.1196	0.02506236
4.1196	0.02506236
4.1308	0.00339507
4.1308	0.00339507
4 1386	0 0047513/
1 1 1 2	0 00201010
4.14C	0.00321342
4.142	0.00321342
4.1512	0.00681745

4.1514	0.07642983
4.1514	0.07642983
4.1600	0.06426561
4.1738	0.00683347
4.1738	0.00683347
A 1771	0 07831398
1 1 0 0 5	0.000000720
4.1095	0.00920739
4.1895	0.00928739
4.1915	0.00000194
4.1943	0.00955625
4.1943	0.00955625
4.1961	0.01608585
4.2301	0.00007187
4.2301	0.00007187
4 2433	0.00503639
A 2477	0 00001049
1.24/7 A.2A77	0.00001049
4.24//	0.00001049
4.25/8	0.00005181
4.2693	0.0265/4/5
4.2696	0.0138371
4.2696	0.0138371
4.2756	0.00120327
4.2756	0.00120327
4.2887	0.00156401
4.2967	0.00233629
4 2967	0 00233629
4.2907	0.00233023
4.3109	0.004/0/92
4.3213	0.0001088
4.332	0.00348246
4.332	0.00348246
4.3395	0.00085128
4.3441	0.00057495
4.3444	0.00539334
4.3444	0.00539334
4.3514	0.02493845
4.3588	0.01454802
4 3621	0 0001669
A 3621	0.0001669
4.3021	0.0001009
4.3003	0.00180699
4.3685	0.00180699
4.3/61	0.0013/122
4.3835	0.00318429
4.3835	0.00318429
4.3987	0.00047193
4.4041	0.00366143
4.4041	0.00366143
4.4114	0.01305887
4 4222	0 0006741
A 4222	0 0006741
7.7222 1.1010	0.0000/41 0.0011/040
4.4243	0.00116849
4.4439	0.00223673

4.4507	0.00112055
4.4507	0.00112055
4.4522	0.00022855
4.4541	0.00057903
4.4541	0.00057903
4.4541	0.00000747
4.4588	0.00412908
4.4627	0.00136173
4.4627	0.00136173
4.4685	0.00434687
4.4685	0.00434687
4.4702	0.00234378
4.477	0.0055228
4.477	0.0055228
4.4806	0.00438961
4.4854	0.00508467
4.4854	0.00508467
4.4896	0.00874154
4.4936	0.02437459

Figure S3. Comparison of measured electronic spectra (powdered crystals in mineral oil) of $[Ag_2Sn(SePh)(PPh_3)_2]$ (2) and $[Cu_2Sn(SPh)(PPh_3)_2]$ (3) (from left to right) with calculated singlet excitation energies and oscillator strengths plotted as vertical lines (green) as well as with superimposed Gaussians of FWHM = 0.3 eV (black curve) to simulate the spectrum (see also Table S3).

Figure S4. Comparison of UV-vis absorption spectra of $[Cu_2Sn(SePh)_6(PPh_3)_2]$ (1), $[Ag_2Sn(SPh)_6(PPh_3)_2]$ (2) and $[Cu_2Sn(SPh)_6(PPh_3)_2]$ (3) measured in dichloromethane and as powdered crystals in mineral oil.

Figure S5. Calculated molecular orbital diagrams of $[Cu_2Sn(SePh)_6(PPh_3)_2]$ (1), $[Ag_2Sn(SPh)_6(PPh_3)_2]$ (2), $[Cu_2Sn(SPh)_6(PPh_3)_2]$ (3) and $[Cu_2Ti(SPh)_6(PPh_3)_2]$ (4). The dashed line separates occupied orbitals from unoccupied ones (e_g/e_u denotes two levels, thus four near-degenerate orbitals).

Figure S6. Photoluminescence excitation (PLE, solid line) and emission (PL, dashed line) spectra of a) $[Cu_2Sn(SePh)_6(PPh_3)_2]$ (1), b) $[Ag_2Sn(SPh)_6(PPh_3)_2]$ (2) and c) $[Cu_2Sn(SPh)_6(PPh_3)_2]$ (3) (powdered crystals in mineral oil) at different temperatures.

Figure S7. Photoluminescence excitation (PLE, solid line) and emission (PL, dashed line) spectra of **4** (powdered crystals in mineral oil) at different temperatures.

Figure S8. Photoluminescence excitation (PLE, solid line) and emission (PL, dashed line) spectra of $[Cu_2Ti(SPh)_6(PPh_3)_2]$ (4) (solution in toluene) at room temperature. Discontinuities marked with an asterisk result from vibrational absorptions of toluene.

Figure S9. Photoluminescence excitation (PLE, solid line) and emission (PL, dashed line) spectra of $[Cu_2Sn(SePh)_6(PPh_3)_2]$ (1) (powdered crystals in mineral oil) at different excitation wavelengths.

Table S8 . Calculated lowest triplet $(1 - 3)$ and singlet (4) excitation and emission energies
for $[Cu_2Sn(SePh)_6(PPh_3)_2]$ (1), $[Ag_2Sn(SPh)_6(PPh_3)_2]$ (2), $[Cu_2Sn(SPh)_6(PPh_3)_2]$ (3) and
$[Cu_2Ti(SPh)_6(PPh_3)_2]$ (4). ^{<i>a,b,c</i>}

	$\Delta E_{\rm exc} [{\rm eV}]$	f	$\Delta E_{\rm em} [{\rm eV}]$	f	$\Delta E_{\rm exc} - \Delta E_{\rm em} [{\rm eV}]$
$1 {}^{3}E_{u}$	1.72	0.021	1.00	0.030	0.72
$1 {}^{3}A_{u}$	1.76	0.601	0.53	0.458	1.23
$2 {}^{3}E_{u}$	2.53	0.849	1.61	0.707	0.92
$2^{3}A_{u}$	2.97	0.092	1.57	0.148	1.40
$1 {}^{3}E_{u}$	2.23	0.102	1.20	0.177	1.03
$1^{3}A_{u}$	2.50	0.620	0.95	0.445	1.55
$2 {}^{3}E_{u}$	2.73	0.902	1.64	0.824	1.09
$2^{3}A_{u}$	3.11	0.008	1.89	0.018	1.22
$1 {}^{3}E_{u}$	2.04	0.049	1.08	0.061	1.06
$1 {}^{3}A_{u}$	2.08	0.555	d	d	d
$2 {}^{3}E_{u}$	2.67	0.790	1.62	0.679	1.05
$2^{3}A_{u}$	3.07	0.022	1.86	0.027	1.21
1 ¹ E	1.56	0	1.47	0	0.09
$1 {}^{1}A$	1.89	0	1.62	0	0.27
	$1 {}^{3}E_{u}$ $1 {}^{3}A_{u}$ $2 {}^{3}E_{u}$ $2 {}^{3}A_{u}$ $1 {}^{3}E_{u}$ $1 {}^{3}A_{u}$ $2 {}^{3}E_{u}$ $2 {}^{3}A_{u}$ $1 {}^{3}E_{u}$ $1 {}^{3}A_{u}$ $2 {}^{3}E_{u}$ $2 {}^{3}A_{u}$ $1 {}^{1}E_{u}$ $1 {}^{1}E_{u}$ $1 {}^{1}A$	$\begin{array}{c c} \Delta E_{\rm exc} \ [{\rm eV}] \\ \hline 1 \ {}^3{\rm E}_{\rm u} & 1.72 \\ 1 \ {}^3{\rm A}_{\rm u} & 1.76 \\ 2 \ {}^3{\rm E}_{\rm u} & 2.53 \\ 2 \ {}^3{\rm A}_{\rm u} & 2.97 \\ \hline 1 \ {}^3{\rm E}_{\rm u} & 2.23 \\ 1 \ {}^3{\rm A}_{\rm u} & 2.50 \\ 2 \ {}^3{\rm E}_{\rm u} & 2.73 \\ 2 \ {}^3{\rm A}_{\rm u} & 3.11 \\ \hline 1 \ {}^3{\rm E}_{\rm u} & 2.04 \\ 1 \ {}^3{\rm A}_{\rm u} & 2.08 \\ 2 \ {}^3{\rm E}_{\rm u} & 2.67 \\ 2 \ {}^3{\rm A}_{\rm u} & 3.07 \\ \hline 1 \ {}^1{\rm E} & 1.56 \\ 1 \ {}^1{\rm A} & 1.89 \\ \end{array}$	$\begin{array}{c cccc} \Delta E_{\rm exc} \ [{\rm eV}] & f \\ \hline 1 \ {}^{3}{\rm E}_{\rm u} & 1.72 & 0.021 \\ 1 \ {}^{3}{\rm A}_{\rm u} & 1.76 & 0.601 \\ 2 \ {}^{3}{\rm E}_{\rm u} & 2.53 & 0.849 \\ 2 \ {}^{3}{\rm A}_{\rm u} & 2.97 & 0.092 \\ \hline 1 \ {}^{3}{\rm E}_{\rm u} & 2.23 & 0.102 \\ 1 \ {}^{3}{\rm A}_{\rm u} & 2.50 & 0.620 \\ 2 \ {}^{3}{\rm E}_{\rm u} & 2.73 & 0.902 \\ 2 \ {}^{3}{\rm E}_{\rm u} & 2.73 & 0.902 \\ 2 \ {}^{3}{\rm A}_{\rm u} & 3.11 & 0.008 \\ \hline 1 \ {}^{3}{\rm E}_{\rm u} & 2.04 & 0.049 \\ 1 \ {}^{3}{\rm A}_{\rm u} & 2.08 & 0.555 \\ 2 \ {}^{3}{\rm E}_{\rm u} & 2.67 & 0.790 \\ 2 \ {}^{3}{\rm A}_{\rm u} & 3.07 & 0.022 \\ \hline 1 \ {}^{1}{\rm E} & 1.56 & 0 \\ 1 \ {}^{1}{\rm A} & 1.89 & 0 \\ \end{array}$	$\begin{array}{c cccc} \Delta E_{\rm exc} [{\rm eV}] & f & \Delta E_{\rm em} [{\rm eV}] \\ \hline 1 {}^{3}{\rm E}_{\rm u} & 1.72 & 0.021 & 1.00 \\ 1 {}^{3}{\rm A}_{\rm u} & 1.76 & 0.601 & 0.53 \\ 2 {}^{3}{\rm E}_{\rm u} & 2.53 & 0.849 & 1.61 \\ 2 {}^{3}{\rm A}_{\rm u} & 2.97 & 0.092 & 1.57 \\ \hline & & & & & \\ 1 {}^{3}{\rm E}_{\rm u} & 2.23 & 0.102 & 1.20 \\ 1 {}^{3}{\rm A}_{\rm u} & 2.50 & 0.620 & 0.95 \\ 2 {}^{3}{\rm E}_{\rm u} & 2.73 & 0.902 & 1.64 \\ 2 {}^{3}{\rm A}_{\rm u} & 3.11 & 0.008 & 1.89 \\ \hline & & & & \\ 1 {}^{3}{\rm E}_{\rm u} & 2.04 & 0.049 & 1.08 \\ 1 {}^{3}{\rm A}_{\rm u} & 2.08 & 0.555 & d \\ 2 {}^{3}{\rm E}_{\rm u} & 2.67 & 0.790 & 1.62 \\ 2 {}^{3}{\rm A}_{\rm u} & 3.07 & 0.022 & 1.86 \\ \hline & 1 {}^{1}{\rm E} & 1.56 & 0 & 1.47 \\ 1 {}^{1}{\rm A} & 1.89 & 0 & 1.62 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^{*a*} at level B3LYP/def2-SV(P). Excitation energies were calculated for the structure parameters optimized for the ground state; emission energies as excitation energies for the structure parameters optimized for the respective excited state. For further details of the theoretical methods, see text. ^b parameters: excitation energy ΔE_{exc} , `emission' energy ΔE_{em} , oscillator strength *f*, Stokes shift $\Delta E_{\text{exc}} - \Delta E_{\text{em}}$ ^c e.g. 1 ³E_u denotes here the first (i.e. energetically lowest) excited triplet state

of \tilde{E}_u symmetry.

^{*d*} optimization failed.

		ground stat	excited state structure				
		experimental	optimized	$1 {}^{3}E_{u}$	$1^{3}A_{u}$	$2^{3}E_{u}$	$2^{3}A_{u}$
1	Cu…Cu	640.8	665.5	677.7	636.0	668.4	724.1
	Cu–Se	249.9	258.1	254.4	252.7	257.1	256.3
	Sn–Se	269.0	280.5	296.7	301.7	300.6	296.0
	Cu–Se–Sn	76.18	76.19	75.45	69.35	73.15	81.58
2	Ag…Ag	683.6	702.4	714.5	661.3	703.0	710.3
	Ag–S	265.2	266.5	269.0	268.8	272.4	271.8
	Sn–S	256.4	272.7	285.2	287.7	286.9	284.1
	Ag–S–Sn	81.85	81.26	80.22	72.81	77.83	79.39
3	Cu…Cu	629.1	650.6	658.5	а	658.6	684.7
	Cu–S	242.1	248.8	243.6	а	247.4	247.7
	Sn–S	256.6	265.7	283.3	а	285.6	281.9
	Cu–S–Sn	78.15	78.36	76.93	а	75.93	80.27
					1		
				1^{1} A		$1 \mathrm{^{1}E}$	
4	Cu…Cu	556.6	579.8	603.8		574.2	
	Cu–S	234.6, 235.4	242.8, 243.0	237.9, 244.4		241.5, 241.7	
	Ti–S	242.8, 248.6	250.3, 250.4	245.9, 266.5		253.6, 254.0	
	Cu–S–Ti	70.88, 70.54	71.74, 72.21	70.49, 78.80		70.81, 70.75	

Table S9. Experimental and calculated (B3LYP/def2-SV(P)) atom distances [pm] for groundand excited state structures of $[Cu_2Sn(SePh)_6(PPh_3)_2]$ (1), $[Ag_2Sn(SPh)_6(PPh_3)_2]$ (2), $[Cu_2Sn(SPh)_6(PPh_3)_2]$ (3) ^[1] and $[Cu_2Ti(SPh)_6(PPh_3)_2]$ (4).

^{*a*} optimization failed

Figure S10. Measured (black) and simulated (grey) X-ray powder pattern for $[Cu_2Sn(SePh)_8(PPh_3)_2]$ (1) as a dried crystalline powder.

Figure S11. Measured (black) and simulated (grey) X–ray powder pattern for [Ag₂Sn(SPh)₈(PPh₃)₂] (2) as a dried crystalline powder.

Figure S12. Measured (black) and simulated (grey) X–ray powder pattern for [Cu₂Sn(SPh)₈(PPh₃)₂] (**3**) as a dried crystalline powder.

Figure S13. Comparison of the calculated excitation spectra for the experimental (black) and optimized (green) structures of $[Cu_2Sn(SePh)_6(PPh_3)_2]$ (1), $[Ag_2Sn(SPh)_6(PPh_3)_2]$ (2), $[Cu_2Sn(SPh)_6(PPh_3)_2]$ (3) and $[Cu_2Ti(SPh)_6(PPh_3)_2]$ (4).

References

(1) L.-S. Wang, T.-L. Sheng, X. Wang, D.-B. Chen, S.-M. Hu, R.-B. Fu, S.-C. Xiang and X.-T. Wu, Inorg. Chem., 2008, **47**, 4054-4059.

(2) V. Andrushko, H. Sommer, D. Himmel, D. Fenske and A. Eichhöfer, Eur. J. Inorg.

Chem., 2011, 3102-3110.