The Influence of Halides in Polyoxotitanate Cages; Dipole Moment, Splitting and Expansion of d-orbitals and Electron-Electron Repulsion

Schirin Hanf,^a Peter D Matthews,^{*a,b} Ning Li,^{a,c} He-Kuan Luo^c and Dominic S Wright^{*a}

^{a.} Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK). E-mail: <u>dsw1000@cam.ac.uk</u>

^b School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK). E-mail: <u>peter.matthews-2@manchester.ac.uk</u>
^c Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634 (Singapore).

- 1) $[Ti_3O(O^iPr)_9X] (X = F, CI, Br, I)$
- 2) $[Ti_4O(OEt)_{15}CoX]$ (X = F, CI, Br, I) and $[Ti_4O(OEt)_{14}(HOEt)]$
- 3) [Ti₇O₅(OEt)₁₉CoX] (X = F, CI, Br, I) and [Ti₇O₄(OEt)₂₀]
- 4) Diffuse reflectance UV-vis spectroscopy
- 5) Single-crystal X-ray crystallography

1) [Ti₃O(OⁱPr)₉X]

Figure S1: Calculated UV-Vis spectra of $[Ti_3O(O^iPr)_9X] X = F (a)$, CI (b), Br (c), I (d) using TD-DFT methods (B3LYP/6-31g^{**}, 6-311g^{**} for iodine).

Table S1: Atomic decomposition of molecular orbitals of $[Ti_3O(O^iPr)_9F]$ (B3LYP/6-31g^{**} level of theory).

Orbital	Orbital	Atomic composition (%)			
	energy (eV)	Titanium	Oxygen	Fluorine	ⁱ Propyl
HOMO	-6.85	1	71	2	1
HOMO-1	-6.85	1	71	2	1
HOMO-2	-7.10	4	66	2	4
LUMO	-1.36	80	14	1	6
LUMO+1	-1.36	80	14	1	5
LUMO+2	-1.22	86	11	0	3
LUMO+3	-1.11	89	19	0	2

Table S2: Atomic decomposition of molecular orbitals of $[Ti_3O(O^iPr)_9Cl]$ (B3LYP/6-31g** level of theory).

Orbital	Orbital	Atomic composition (%)			
	energy (eV)	Titanium	Oxygen	Chlorine	ⁱ Propyl
HOMO	-6.78	1	47	35	16
HOMO-1	-6.78	1	46	35	16
HOMO-2	-6.97	2	40	44	13
LUMO	-1.37	85	13	0	2
LUMO+1	-1.35	80	14	0	6
LUMO+2	-1.35	80	14	0	6
LUMO+3	-1.27	87	10	0	3

Table S3: Atomic decomposition of molecular orbitals of $[Ti_3O(O^iPr)_9Br]$ (B3LYP/6-31g^{**} level of theory).

Orbital	Orbital	Atomic composition (%)			
	energy (eV)	Titanium	Oxygen	Bromine	ⁱ Propyl
HOMO	-6.50	3	25	63	8
HOMO-1	-6.50	3	25	63	8
HOMO-2	-6.70	3	33	55	9
LUMO	-1.39	85	13	0	2

LUMO+1	-1.36	80	13	0	6
LUMO+2	-1.36	80	14	0	6
LUMO+3	-1.28	87	10	0	3
LUMO+4	-1.19	83	13	0	4
LUMO+5	-1.19	83	13	0	4

Table	S4 :	Atomic	decomposition	of	molecular	orbitals	of	[Ti₃O(O ⁱ Pr) ₉ I]
(B3LYF	/6-31	q**, 6-311	g** for iodine leve	el of	theory).			

Orbital	Orbital		Atomic composition (%)			
	energy (eV)	Titanium	Oxygen	lodine	ⁱ Propyl	
HOMO	-5.69	1	5	91	3	
HOMO-1	-5.69	1	5	91	3	
HOMO-2	-5.97	3	16	79	3	
LUMO	-1.51	85	13	0	2	
LUMO+1	-1.42	81	13	0	6	
LUMO+2	-1.42	81	13	0	6	
LUMO+5	-1.29	83	13	0	4	
LUMO+6	-1.16	83	14	0	3	
LUMO+8	-0.77	78	13	3	6	

Table S5: Main orbital contributions to transition of $[Ti_3O(O^iPr)_9F]$ (with oscillator strengths \geq 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g**).

Main orbital	Eg (eV)	Eg (nm)	Oscillator strength
contributions			
HOMO-1 → LUMO+1	4.420	280.5	0.0098
HOMO → LUMO+2			
HOMO-2→ LUMO			
HOMO → LUMO+2	4.634	266.4	0.0143
HOMO → LUMO	4.659	266.1	0.0138
HOMO → LUMO+3	4.752	260.9	0.0075
HOMO-1 → LUMO+3	4.755	260.8	0.0073

Table S6: Main orbital contributions to transition of $[Ti_3O(O^iPr)_9Cl]$ (with oscillator strengths \geq 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g**).

Main orbital	Eg (eV)	Eg (nm)	Oscillator strength
contributions		-	
HOMO-1 → LUMO+1	4.392	282.3	0.0018
HOMO → LUMO+2			
HOMO-2 → LUMO			
HOMO-1 → LUMO	4.439	279.3	0.0078
HOMO → LUMO	4.439	279.3	0.0077
HOMO → LUMO	4.476	277.0	0.0103
HOMO → LUMO+3			
HOMO-1 → LUMO	4.476	277.0	0.0103
HOMO-1 \rightarrow LUMO+3			

Main orbital	Eq (eV)	Eq (nm)	Oscillator strength
contributions		5 ()	5
HOMO → LUMO	4.141	299.4	0.0016
HOMO → LUMO+1			
HOMO-1 → LUMO	4.144	299.1	0.0014
HOMO-1 → LUMO	4.172	297.2	0.0061
HOMO-1 → LUMO	4.173	297.1	0.0058
HOMO-1 → LUMO+1	4.395	282.1	0.0029
HOMO → LUMO+5			

Table S7: Main orbital contributions to transition of $[Ti_3O(O^iPr)_9Br]$ (with oscillator strengths ≥ 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g**).

Table S8: Main orbital contributions to transition of $[Ti_3O(O^iPr)_9]$ (with oscillator strengths ≥ 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g^{**}, 6-311g^{**} for iodine).

Main orbital	Eg (eV)	Eg (nm)	Oscillator strength
contributions			-
HOMO-2 → LUMO+1	3.675	337.4	0.0011
HOMO-2 \rightarrow LUMO+2			
HOMO-2 → LUMO+1	3.677	337.2	0.0011
HOMO → LUMO+5			
HOMO-2 \rightarrow LUMO+6	3.945	314.3	0.0033
HOMO-2 \rightarrow LUMO+8	4.410	281.2	0.0167

Table S9: Band gaps obtained DOS calculations (B3LYP/6-31g**, 6-311g** for iodine).

Compound	Eg (eV)
1 -F	5.49
1-Cl	5.41
1 -Br	5.11
1-1	4.18

Table S10: Band gaps obtained from TD-DFT calculations (B3LYP/6-31g^{**}, 6-311g^{**} for iodine). First singlet excitation energy with oscillator strength ≥ 0 .

Compound	Main orbital contributions	Eg (eV)	Eg (nm)	Oscillator strength
1-F	HOMO-1 → LUMO+1 HOMO → LUMO	4.420	280.5	0.0098
1 -Cl	HOMO-1 → LUMO+1 HOMO → LUMO+2	4.392	282.3	0.0018
1 -Br	HOMO → LUMO HOMO → LUMO+1	4.142	299.4	0.0016
1-1	HOMO → LUMO	3.357	369.3	0.0007

2) $[Ti_4O(OEt)_{15}CoX]$ (X = F, CI, Br, I) and $[Ti_4O(OEt)_{14}(HOEt)]$

Figure S2: Density of states diagrams of $[Ti_4O(OEt)_{15}CoX] X = F$ (a), Cl (b), Br (c), I (d) and the undoped Ti_4 cage. Calculated on a B3LYP/6-31g*, 6-311g* (for iodine) level of theory. Spin-up (α orbitals) and spin-down channels (β orbitals) are distinguished by the positive and negative signs of DOS.

Figure S3: Calculated UV-Vis spectra of $[Ti_4O(OEt)_{15}CoX] X = F$ (a), CI (b), Br (c), I (d) and the undoped $[Ti_4O(OEt)_{14}(HOEt)]$ cage (e) using TD-DFT methods (B3LYP/6-31g*, 6-311g* for iodine).

Table STT.	Alomic	composition	of molecu	iar orbitais	$S OI [II_4O($			
<u>(B3LYP/6-31g</u>	<u>g* level of t</u>	heory).						
Orbital	Orbital	Atomic composition (%)						
	energy	Titanium	Cobalt	Oxygen	Fluorine	Ethyl		
	(eV)					-		
ΗΟΜΟ-α	-5.88	3	46	33	11	7		
HOMO-α-1	-6.22	2	40	46	2	12		
HOMO-α-4	-6.44	0	53	13	29	5		
LUMO-α	-1.59	84	0	11	0	5		
LUMO-α+1	-1.52	85	0	12	0	3		
LUMO-α+2	-1.48	87	0	10	0	3		
LUMO-α+3	-1.45	85	0	11	0	4		
LUMO-α+4	-1.34	84	0	12	0	4		
ΗΟΜΟ-β	-5.05	1	80	9	8	2		
ΗΟΜΟ-β-1	-5.16	1	82	9	7	2		
LUMO-β	-1.59	84	1	11	0	5		
LUMO-β+1	-1.53	84	0	12	0	4		
LUMO-	0.32	69	13	10	0	8		
β+14								
LUMO-	0.42	32	56	6	2	4		
β+15								
LUMO-	0.67	56	24	10	1	9		
β+16								
LUMO-	0.84	43	39	11	3	5		
β+18								

 \sim ~ []

Orbital	Orbital	Atomic composition (%)						
	energy	Titanium	Cobalt	Oxygen	Chlorine	Ethyl		
	(eV)							
ΗΟΜΟ-α	-6.08	1	31	24	35	6		
HOMO-α-1	-6.19	0	19	4	74	3		
HOMO-α-3	-6.44	1	27	53	6	12		
LUMO-α	-1.70	85	0	10	0	5		
LUMO-α+1	-1.59	84	0	11	0	4		
LUMO-α+4	-1.46	84	0	12	0	4		
ΗΟΜΟ-β	-5.42	1	69	9	19	2		
ΗΟΜΟ-β-1	-5.42	1	70	10	17	2		
LUMO-β	-1.71	85	1	9	0	5		
LUMO-	-0.48	31	62	4	2	1		
β+12								
LUMO-	-0.17	6	85	5	1	3		
β+13								
LUMO-	0.01	18	72	6	1	3		
β+14								
LUMO-	0.40	53	27	11	2	7		
β+16								

Table S12: Atomic composition of molecular orbitals of $[Ti_4O(OEt)_{15}CoCl]$ (B3LYP/6-31g* level of theory).

Table S13: Atomic composition of molecular orbitals of $[Ti_4O(OEt)_{15}CoBr]$ (B3LYP/6-31g* level of theory).

		11						
Orbital	Orbital	Atomic composition (%)						
	energy	Titanium	Cobalt	Oxygen	Bromine	Ethyl		
	(eV)					-		
ΗΟΜΟ-α	-5.84	0	13	2	82	3		
HOMO-α-1	-5.86	0	17	6	75	3		
LUMO-α	-1.69	85	0	10	0	5		
LUMO-α+1	-1.59	85	0	11	0	4		
LUMO-α+2	-1.53	86	0	11	0	3		
LUMO-α+4	-1.46	84	0	12	0	4		
ΗΟΜΟ-β	-5.34	0	55	7	35	2		
ΗΟΜΟ-β-1	-5.45	1	58	9	31	2		
ΗΟΜΟ-β-3	-6.48	0	32	10	53	5		
LUMO-β	-1.71	84	1	10	0	5		
LUMO-β+2	-1.54	84	2	10	0	3		
LUMO-β+4	-1.50	81	3	12	0	3		
LUMO-β+6	-1.34	84	2	11	0	3		
LUMO-β+7	-1.28	83	1	12	0	4		
LUMO-β+8	-1.23	83	1	13	0	4		
LUMO-	-1.10	82	0	13	0	4		
β+10								
LUMO-	-0.54	28	66	4	2	1		
β+12								
LUMO-	-0.24	6	84	6	2	3		
β+13								
LUMO-	0.38	57	23	11	2	7		
β+16								

Orbital	Orbital		Atomic composition (%)					
	energy (eV)	Titanium	Cobalt	Oxygen	lodine	Ethyl		
ΗΟΜΟ-α	-5.51	0	4	1	93	2		
LUMO-α	-1.77	85	0	10	0	5		
ΗΟΜΟ-β	-5.32	0	26	4	68	2		
ΗΟΜΟ-β-1	-5.42	1	26	4	68	2		
ΗΟΜΟ-β-2	-6.06	0	49	17	28	6		
ΗΟΜΟ-β-3	-6.25	0	61	9	26	5		
LUMO-β	-1.79	84	2	9	0	5		
LUMO-β+4	-1.58	81	4	12	0	4		
LUMO-β+5	-1.46	82	3	11	0	4		
LUMO-β+8	-1.32	83	0	14	0	3		
LUMO-	-0.45	7	84	6	1	3		
β+13								
LUMO-	-0.28	10	80	6	2	2		
β+14								

Table S14: Atomic composition of molecular orbitals of $[Ti_4O(OEt)_{15}Col]$ (B3LYP/6-31g*, 6-311g* (for iodine) level of theory).

Table S15: Atomic composition of molecular orbitals of $[Ti_4O(OEt)_{14}(HOEt)]$ (B3LYP/6-31g* level of theory).

Orbital	Orbital energy	Atomic composition				
	(eV)	Titanium	Oxygen	Ethyl		
НОМО	-6.22	2	78	20		
HOMO-1	-6.23	2	77	21		
LUMO	-1.23	84	12	4		
LUMO+1	-1.19	84	12	5		
LUMO+2	-1.10	85	12	4		

Table S16: Main orbital contributions to transition of $[Ti_4O(OEt)_{15}CoF]$ (with oscillator strengths \geq 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g*).

Main orbital contributions	Eg (eV)	Eg (nm)	Oscillator strength
HOMO-β-1 → LUMO-β+12	1.956	635.6	0.0017
HOMO-β-1 → LUMO-β+15			
HOMO-β-1 → LUMO-β+16			
HOMO-β-1 \rightarrow LUMO-β+18			
HOMO-β → LUMO-β	2.707	458.0	0.0013
HOMO-β → LUMO-β+1			
HOMO-α → LUMO-α	3.496	354.7	0.0016
HOMO- $\alpha \rightarrow$ LUMO- α +1			
HOMO- $\alpha \rightarrow$ LUMO- α +2	3.544	349.8	0.0015
HOMO- $\alpha \rightarrow$ LUMO- α +3			
HOMO-α-1 → LUMO-α+1	3.714	333.8	0.0013
HOMO- $\alpha \rightarrow$ LUMO- α +2			
HOMO-α → LUMO-α+4			

$s_1 = 10^{-1}$ $s_2 = 0.001$). Calculated employing 1D-D11 methods (DSE1F70-51g.).							
Main orbital contributions	Eg (eV)	Eg (nm)	Oscillator strength				
HOMO-β-1 → LUMO-β+12	1.442	859.7	0.0013				
HOMO-β → LUMO-β+13							
HOMO-β-1 → LUMO-β+14	1.857	667.8	0.0019				
HOMO-β-1 \rightarrow LUMO-β+16							
HOMO- $\alpha \rightarrow$ LUMO- α +1	3.652	339.5	0.0028				
HOMO-α-3 → LUMO-α+1	3.834	323.3	0.0014				
HOMO-α-3→ LUMO-α+4							
HOMO-α-1 → LUMO-α							

Table S17: Main orbital contributions to transition of $[Ti_4O(OEt)_{15}CoCI]$ (with oscillator strengths \geq 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g*).

Table S18: Main orbital contributions to transition of $[Ti_4O(OEt)_{15}CoBr]$ (with oscillator strengths \geq 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g*).

Main orbital contributions	Eg (eV)	Eg (nm)	Oscillator strength
HOMO-β-3 → LUMO-β+13	1.427	868.91	0.0017
HOMO-β-1 → LUMO-β+12			
HOMO-β → LUMO-β+13			
HOMO-β-1 → LUMO-β+14	1.525	673.8	0.0023
HOMO-β-1 → LUMO-β+16			
HOMO-β → LUMO-β+2	3.239	382.8	0.0011
HOMO-β → LUMO-β+4			
HOMO-β-1 → LUMO-β+6	3.482	356.1	0.0011
HOMO-β-1 → LUMO-β+7			
HOMO-β-1 → LUMO-β+8			
HOMO-β-1 → LUMO-β+10			
HOMO-α-1 → LUMO-α+1	3.597	344.7	0.0021
HOMO-α-1 → LUMO-α+2	3.691	335.9	0.0013
HOMO-α-1 → LUMO-α+4			
HOMO- $\alpha \rightarrow$ LUMO- α +1			

Table S19: Main orbital contributions to transition of $[Ti_4O(OEt)_{15}Col]$ (with oscillator strengths \geq 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g*).

Main orbital contributions	Eg (eV)	Eg (nm)	Oscillator strength
HOMO-β-3 → LUMO-β+13	1.433	865.4	0.0021
HOMO-β → LUMO-β+13			
HOMO-β-2 → LUMO-β+14	1.771	700.0	0.0027
HOMO-β-1 → LUMO-β+14			
HOMO-α → LUMO-α	3.227	384.2	0.0014
HOMO-β → LUMO-β+4			
HOMO-β-1 → LUMO-β+5	3.374	367.4	0.0019
HOMO-β-1 → LUMO-β+8	3.475	356.8	0.0016

Table S20: Main orbital contributions to transition of $[Ti_4O(OEt)_{14}(HOEt)]$ (with oscillator strengths ≥ 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g^{*}).

Main orbital contributions	Eg (eV)	Eg (nm)	Oscillator strength
HOMO-1 → LUMO	4.013	308.9	0.0087
HOMO-1 → LUMO+1			
HOMO-1 → LUMO+1	4.060	305.4	0.0089
HOMO → LUMO+1			
HOMO → LUMO	4.105	302.0	0.0039
HOMO-1 → LUMO+2	4.155	298.4	0.0059

3) [Ti₇O₅(OEt)₁₉CoX] (X = F, CI, Br, I) and [Ti₇O₄(OEt)₂₀]

Figure S4: Calculated UV-Vis spectra of $[Ti_7O_5(OEt)_{19}CoX] X = F$ (a), Cl (b), Br (c), I (d) and $[Ti_7O_4(OEt)_{20}]$ (e) using TD-DFT methods (B3LYP/6-31g*, 6-311g* for iodine).

Table	S21 :	Atomic	composition	of	molecular	orbitals	of	[Ti ₇ O ₅ (OEt) ₁₉ CoF]
(B3LYF	P/6-31g	y* level of	theory).					

Orbital	Orbital	Atomic composition (%)				
	energy (eV)	Titanium	Cobalt	Oxygen	Fluorine	Ethyl
ΗΟΜΟ-α	-6.00	3	50	20	24	3
HOMO-α-1	-6.12	3	38	41	7	10
HOMO-α-2	-6.22	3	42	44	2	10
HOMO-α-4	-6.48	1	50	12	33	5
LUMO-α	-1.72	89	0	9	0	2
LUMO-α+1	-1.64	87	0	10	0	3
LUMO-α+2	-1.61	86	0	11	0	3
ΗΟΜΟ-β	-5.06	1	80	10	8	2
ΗΟΜΟ-β-1	-5.13	1	82	7	7	2
LUMO-β	-1.72	89	1	8	0	2
LUMO-β+1	-1.66	87	2	9	0	2
LUMO-β+2	-1.61	85	0	11	0	4
LUMO-β+4	-1.51	86	0	11	0	3
LUMO-β+14	-1.09	86	0	11	0	3
LUMO-β+15	-1.00	82	0	14	0	4
LUMO-β+16	-0.97	85	0	12	0	3
LUMO-β+17	-0.92	81	0	15	0	3
LUMO-β+18	-0.83	84	0	14	0	3
LUMO-β+22	0.005	62	27	7	1	3
LUMO-β+23	0.28	35	52	7	1	5
LUMO-β+25	0.39	50	33	10	2	6
LUMO-B+26	0.47	9	81	6	1	2

Orbital	Orbital	Atomic composition (%)				
	energy (eV)	Titanium	Cobalt	Oxygen	Chlorine	Ethyl
ΗΟΜΟ-α	-6.13	1	29	14	52	3
HOMO-α-1	-6.16	0	22	7	68	3
HOMO-α-2	-6.17	0	22	12	62	3
HOMO-α-3	-6.41	3	28	46	12	11
ΗΟΜΟ-α-4	-6.44	3	30	50	5	12
LUMO-α	-1.80	90	0	9	0	2
LUMO-α+1	-1.72	87	0	9	0	2
ΗΟΜΟ-β	-5.40	1	67	10	20	2
ΗΟΜΟ-β-1	-5.48	1	71	7	19	2
LUMO-β	-1.80	89	1	8	0	2
LUMO-β+1	-1.76	86	3	9	0	2
LUMO-β+2	-1.70	58	0	11	0	4
LUMO-β+8	-1.40	83	0	13	0	2
LUMO-β+13	-1.19	85	0	13	0	2
LUMO-β+20	-0.30	25	58	5	2	2
LUMO-β+21	-0.20	14	76	6	1	2
LUMO-β+23	-0.01	45	40	13	1	2
LUMO-β+24	0.03	34	52	11	1	2

Table S22: Atomic composition of molecular orbitals of $[Ti_7O_5(OEt)_{19}CoCl]$ (B3LYP/6-31g* level of theory).

Table S23: Atomic composition of molecular orbitals of $[Ti_7O_5(OEt)_{19}CoBr]$ (B3LYP/6-31g* level of theory).

Orbital	Orbital	Atomic composition (%)				
	energy (eV)	Titanium	Cobalt	Oxygen	Bromine	Ethyl
ΗΟΜΟ-α	-5.8	0	13	2	83	3
HOMO-α-1	-5.84	0	13	2	83	2
HOMO-α-2	-5.97	1	33	14	50	2
ΗΟΜΟ-α-4	-6.44	3	28	55	1	14
LUMO	-1.79	86	0	9	0	2
LUMO-α+1	-1.71	87	0	10	0	3
LUMO-α+2	-1.60	89	0	11	0	4
ΗΟΜΟ-β	-5.31	0	54	8	35	2
ΗΟΜΟ-β-1	-5.41	1	57	6	34	2
LUMO-β	-1.79	89	1	8	0	2
LUMO-β+1	-1.75	86	3	9	0	2
LUMO-β+7	-1.44	85	1	11	0	2
LUMO-β+13	-1.18	85	0	13	0	2
LUMO-β+20	-0.37	28	65	4	2	1
LUMO-β+21	-0.26	9	82	5	2	2
LUMO-B+23	-0.06	26	63	7	2	3

Orbital	Orbital	Atomic composition (%)				
	energy (eV)	Titanium	Cobalt	Oxygen	Iodine	Ethyl
ΗΟΜΟ-α	-5.44	0	3	1	93	3
HOMO-α-1	-5.48	0	4	1	94	2
HOMO-α-2	-5.84	1	21	9	66	1
LUMO	-1.89	90	0	9	0	2
LUMO-α+1	-1.79	87	0	10	0	3
LUMO-α+5	-1.59	85	0	11	0	3
LUMO-α+6	-1.54	86	0	11	0	3
ΗΟΜΟ-β	-5.27	0	23	4	70	2
ΗΟΜΟ-β-1	-5.36	1	22	2	73	2
ΗΟΜΟ-β-2	-6.08	0	58	14	24	5
ΗΟΜΟ-β-3	-6.19	0	65	9	24	3
LUMO-β	-1.89	89	1	8	0	1
LUMO-β+1	-1.84	86	4	8	0	2
LUMO-β+21	-0.50	5	87	5	1	2
LUMO-β+22	-0.32	9	80	7	2	2

Table S24: Atomic composition of molecular orbitals of $[Ti_7O_5(OEt)_{19}Col]$ (B3LYP/6-31g*, 6-311g* (for iodine) level of theory).

Table S25: Atomic composition of molecular orbitals of $[Ti_7O_4(OEt)_{20}]$ (B3LYP/6-31g* level of theory).

Orbital	Orbital energy	A	tomic composition	
	(eV)	Titanium	Oxygen	Ethyl
НОМО	-6.54	2	76	22
LUMO	-1.44	88	10	2
LUMO+1	-1.40	89	8	3

Table S26: Main orbital contributions to transition of [Ti ₇ O ₅ (OEt) ₁₉ CoF] (with oscillato
strengths \geq 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g*).

Main orbital contributions	Eg (eV)	Eg (nm)	Oscillator strength
HOMO- β -1 → LUMO- β +22 HOMO- β -1 → LUMO- β +26 HOMO- β → LUMO- β +23 HOMO- β → LUMO- β +25	1.619	765.9	0.0013
HOMO-β-1 \rightarrow LUMO-β+1 HOMO-β-1 \rightarrow LUMO-β+26	1.733	715.2	0.0014
HOMO- β -1 \rightarrow LUMO- β +1 HOMO- β -1 \rightarrow LUMO- β +2 HOMO- β \rightarrow LUMO- β +4	2.748	451.1	0.0019
HOMO- $\alpha \rightarrow$ LUMO- α	3.394	365.3	0.0013
HOMO- α -1 \rightarrow LUMO- α HOMO- $\alpha \rightarrow$ LUMO- α +1	3.462	358.1	0.0034
HOMO- α -4 \rightarrow LUMO- α HOMO- α \rightarrow LUMO- α +1	3.486	355.7	0.0029
HOMO-α-2 → LUMO-α HOMO-α → LUMO-α+2	3.557	348.6	0.0021
HOMO-α-1 → LUMO-α+1 HOMO-β-1 → LUMO-β+14 HOMO-β-1 → LUMO-β+17	3.610	343.4	0.0014
HOMO-α-2 → LUMO-α+1	3.669	337.9	0.0022

HOMO- α -2 \rightarrow LUMO- α +2			
HOMO-β-1 \rightarrow LUMO-β+15			
HOMO- α -1 \rightarrow LUMO- α +2	3.691	335.9	0.0035
HOMO-β → LUMO-β+16			
HOMO- $\beta \rightarrow$ LUMO- β +18			

Table S27: Main orbital contributions to transition of $[Ti_7O_5(OEt)_{19}CoCI]$ (with oscillator strengths \geq 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g*).

Main orbital contributions	Eg (eV)	Eg (nm)	Oscillator strength
HOMO-β-1 → LUMO-β+20 HOMO-β → LUMO-β+21	1.504	824.5	0.0019
HOMO-β-1 → LUMO-β+20 HOMO-β-1 → LUMO-β+23 HOMO-β-1 → LUMO-β+24	1.682	737.3	0.0012
HOMO-β-1 → LUMO-β+1 HOMO-β-1 → LUMO-β+2	3.010	411.9	0.0011
HOMO- α -2 \rightarrow LUMO- α HOMO- α -1 \rightarrow LUMO- α HOMO- α \rightarrow LUMO- α	3.520	352.2	0.0015
HOMO-α-3 → LUMO-α HOMO-α-2 → LUMO-α HOMO-α → LUMO-α	3.577	346.6	0.0012
HOMO- α -4 → LUMO- α HOMO- α → LUMO- α +1	3.596	344.8	0.0044
HOMO-β-1 → LUMO-β+8 HOMO-β-1 → LUMO-β+13	3.628	341.7	0.0023
HOMO-α-3 → LUMO-α+1 HOMO-α-2 → LUMO-α+1 HOMO-α-1 → LUMO-α+1	3.716	333.7	0.0014

Table S28: Main orbital contributions to transition of $[Ti_7O_5(OEt)_{19}CoBr]$ (with oscillator strengths \geq 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g*).

Main orbital contributions	Eg (eV)	Eg (nm)	Oscillator strength
HOMO-β → LUMO-β+21	1.480	837.7	0.0025
HOMO-β-1 → LUMO-β+20	1.675	740.1	0.0014
HOMO-β-1 → LUMO-β+23			
HOMO- $\beta \rightarrow$ LUMO- β +7	3.144	394.4	0.0010
HOMO- α -2 \rightarrow LUMO- α	3.421	362.4	0.0016
HOMO-α → LUMO-α			
HOMO- α -2 \rightarrow LUMO- α +1	3.49	355.5	0.0055
HOMO-α-2 → LUMO-α+2			
HOMO-α → LUMO-α+1			
HOMO-α-2 → LUMO-α+1	3.513	353.9	0.0014
HOMO- $\alpha \rightarrow$ LUMO- α +1			
HOMO- α -1 \rightarrow LUMO- α +1	3.554	348.8	0.0015
HOMO- α -4 \rightarrow LUMO- α	3.677	337.2	0.0010
HOMO- α -4 \rightarrow LUMO- α	3.737	331.8	0.0021
HOMO-α → LUMO-α+5			
HOMO-α→ LUMO-α+6			

Table S29: Main orbital contributions to transition of $[Ti_7O_5(OEt)_{19}Col]$ (with oscillator strengths ≥ 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g*, 6-311g* for iodine).

Main orbital contributions	Eg (eV)	Eg (nm)	Oscillator strength
HOMO-β-3 → LUMO-β+21	1.422	871.8	0.0031
HOMO-β-2 \rightarrow LUMO-β+21			
HOMO-β → LUMO-β+21			
HOMO-β-3 → LUMO-β+22	1.668	743.4	0.0015
HOMO-β-2 \rightarrow LUMO-β+22			
H OMO-β-1 → LUMO-			
β+22			
HOMO-β-1 \rightarrow LUMO-β+1	2.941	421.6	0.0018
HOMO-β → LUMO-β+7	3.132	395.8	0.0011
HOMO- α -2 \rightarrow LUMO- α	3.274	376.8	0.0016
HOMO-α → LUMO-α+5	3.363	368.6	0.0016
HOMO-α → LUMO-α+6			
HOMO-α-2 → LUMO-α+1	3.380	366.8	0.0069
HOMO-β-2 → LUMO-β	3.429	361.6	0.0011

Table S30: Main orbital contributions to transition of $[Ti_7O_4(OEt)_{20}]$ (with oscillator strengths ≥ 0.001). Calculated employing TD-DFT methods (B3LYP/6-31g*).

Main orbital	Eg (eV)	Eg (nm)	Oscillator strength	
contributions				
HOMO → LUMO	4.081	303.8	0.0025	
HOMO → LUMO+1				
HOMO → LUMO+1	4.174	297.1	0.0154	

4) Diffuse reflectance UV-vis spectroscopy

Figure S5: Diffuse reflectance UV-vis spectrum of $[Ti_3O(O^iPr)_9(OMe)]$ and linear fit to determine band gap.

Figure S6: Diffuse reflectance UV-vis spectrum of $[Ti_3O(O^iPr)_9CI]$ and linear fit to determine band gap.

Figure S7: Diffuse reflectance UV-vis spectrum of $[Ti_4O(OEt)_{15}CoCI]$ and linear fit to determine band gap.

Figure S8: Diffuse reflectance UV-vis spectrum of [Ti₄O(OEt)₁₅CoBr] and linear fit to determine band gap.

Figure S9: Diffuse reflectance UV-vis spectrum of $[Ti_7O_4(OEt)_{20}]$ and linear fit to determine band gap.

Figure S10: Diffuse reflectance UV-vis spectrum of $[Ti_7O_5(OEt)_{19}CoCI]$ and linear fit to determine band gap.

Figure S11: Diffuse reflectance UV-vis spectrum of $[Ti_7O_5(OEt)_{19}CoBr]$ and linear fit to determine band gap.

Figure S12. An expanded 500-700 nm region of diffuse reflection spectra for **2**-Cl and **2**-Br showing the absorbances for **2**-Br.

5) Single-crystal X-ray crystallography

Figure S13: Structure of **1**-CI. Displacement ellipsoids are drawn at the 50% probability level. H omitted for clarity. Blue = Ti, green = CI, red = O, grey = C.

 Table S31: Crystallographic data for 1-Cl.

Compound	1 -Cl
Empirical formula	C ₂₇ H ₆₃ ClO ₁₀ Ti ₃
Formula weight	726.92
Temperature	180(2) K
Wavelength	0.7107 Å
Crystal system	Tetragonal
Space group	P4 ₁ 2 ₁ 2
Unit cell dimensions	a = 12.54740(10) Å
	b = 12.54740(10) Å
	c = 49.8245(5) Å
	$\alpha = 90^{\circ}$
	β = 90 °
	$\gamma = 90^{\circ}$
Volume	7844.23(15) Å ³
Z	8
Absorption coefficient	0.707 mm ⁻¹
Crystal size	0.370 x 0.160 x 0.150 mm ³
Reflections collected	20677
Independent reflections	6324 [R _(int) = 0.0554]
Goodness-of-fit on F2	1.05
Final R indices [I>2o(I)]	$R_1 = 0.0598$, $wR_2 = 0.1507$
R indices (all data)	R ₁ = 0.0970, wR ₂ = 0.1671