Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Half-Sandwich Complexes of Iridium and Ruthenium Containing Cysteine-Derived Ligands

María Carmona,^a Ricardo Rodríguez,^{a,*} Fernando J. Lahoz,^a Pilar García-Orduña,^a Carlos Cativiela,^b José A. López^a and Daniel Carmona^{a,*}

 ^a Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009 Zaragoza, Spain
^b Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química Orgánica, Pedro Cerbuna 12, 50009 Zaragoza, Spain

E-mails: dcarmona@unizar.es (D. C.), riromar@unizar.es (R. R.).

Table of Contents

1- Hydrogen bond interactions in 6aSb	S2	
2- Kinetic studies for the epimerization of complex 9a	S 3	

1- Hydrogen bond interactions in 6aSb

Figure S1. Intermolecular interactions in **6aSb**. Symmetry codes: ') x - 1/2, -y + 1/2, -z + 1; ") x - 1, y, z.

Hydrogen bonds (Å, °): Symme	etry code: ') $x - 1/2, -y + 1/2, -z + 1$.
------------------------------	---

	D-H	D···A	H···A	D-H···A
N-H(1N)…O(2')	0.90(4)	2.846(4)	1.96(4)	170(4)

N-H $\cdots \pi$ interactions	(Å, °): Symmetry	y code: ")) x - 1,	<i>y</i> , <i>z</i>
-------------------------------	-------	-------------	------------	----------	---------------------

		2	/ ///		
	H···G	H…Ph	γ	N-H···C	N-H \cdots C (Ph)
		(plane)			
N-	2.58(3)	2.54(3)	10.2(6)	C(16"): 2.93(3)	C(15"): 3.10(3)
$H(2N) \cdots C(15'')/C(20'')$				C(17"): 2.73(3)	C(20"): 3.11(3)
				C(18"): 2.74(3)	
				C(19"): 2.94(3)	

H···G represents the distance from the H atom to the centroid of the phenyl ring of the reported NH/ π interaction. H···Ph is the separation from the H atom to the mean plane of the ring. γ angle: angle between the H-G vector and the normal of the phenyl ring. N-H···C: contact distances between H atom and C atoms under the assumed criterion (3.05 Å). N-H···C(Ph): range of separation between H and the rest of the carbon atoms of the ring.

2- Kinetic studies for the epimerization of complex 9a

 $[9a] = 78.61 \text{ mM}; \text{ solvent} = CD_2Cl_2$

Т (К)	k (s ⁻¹)
193	182,7504
213	178,5546
223	172,2720
238	173,1600

In (k/T)	1/T
0,005181347	-0,054568901
0,004694836	-0,176397729
0,004484305	-0,258097148
0,004201681	-0,318054651

$$\begin{split} \Delta G^{\neq} &= 12.43 \pm 2.28 \text{ kcal/mol} \\ \Delta H^{\neq} &= -0.55 \pm 0.03 \text{ kcal/mol} \\ \Delta S^{\neq} &= -44.3 \pm 6.0 \text{ cal/K} \cdot \text{mol} \end{split}$$