Supporting Information

Unusual N-oxido formation in the peroxidation of cobalt(II) ethylenediaminetetraacetates

Yu-Chen Yang,^{a,b} Rui Wu,^b Yan Cai^b and Zhao-Hui Zhou*^b

^aShaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, People's Republic of China.
^bState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China. E-mail: zhzhou@xmu.edu.cn; Tel: +86 592 2184531; Fax: +86 592 2183047.

- Figure S1. ORTEP plot of the anion structure for K[Co(edta)]·2H₂O (4) at the 30% probability levels.
- Figure S2. ORTEP plot of the anion structure for Na_{2n}[Co(edta)]_n·4nH₂O (**5**) at the 30% probability levels.
- Figure S3. IR spectra for $K_4[Co_2(edtaO_2)_2] \cdot 6.5H_2O(1)$, $K_4[Co_2(edtaO_2)_2] \cdot 10H_2O(2)$, $[Co_2(edtaO_2)(H_2O)_6]_n \cdot 2nH_2O(3)$, $K[Co(edta)] \cdot 2H_2O(4)$ and $Na_{2n}[Co(edta)]_n \cdot 4nH_2O(5)$.
- Figure S4. UV-Vis solution spectra for $K_4[Co_2(edtaO_2)_2] \cdot 6.5H_2O(1)$, $K_4[Co_2(edtaO_2)_2] \cdot 10H_2O(2)$, $K[Co(edta)] \cdot 2H_2O(4)$ and $Na_{2n}[Co(edta)]_n \cdot 4nH_2O(5)$.
- Table S1 Bond valence sum calculations for cobalt complexes $1 \sim 5$.
- Table S2 Selected bond distances for $K_4[Co_2(edtaO_2)_2] \cdot nH_2O$ [n = 6.5 (1), 10 (2)],[Co₂(edtaO₂)(H₂O)₆]_n·2nH₂O(3), K[Co(edta)]·2H₂O (4) and. Na_{2n}[Co(edta)]_n·4nH₂O (5).
- Table S3.Selected bond distances and angles within the water clusters in
 $K_4[Co_2(edtaO_2)_2] \cdot 10H_2O$ (2).
- Table S4. ¹³C NMR spectral data (in ppm) for K[Co(edta)] \cdot 2H₂O (4) and K₄EDTA.

Co ⁿ⁺	Complexes	Col	Co2	
+2	$K_4[Co_2(edtaO_2)_2] \cdot 6.5H_2O(1)$	2.091	2.122	
+2	$K_4[Co_2(edtaO_2)_2] \cdot 10H_2O(2)$	2.179	2.112	
+2	$[Co_2(edtaO_2)(H_2O)_6]_n \cdot 2nH_2O(3)$	2.146		
+3	$K[Co(edta)] \cdot 2H_2O(4)$	3.778		
+2	$Na_{2n}[Co(edta)]_n \cdot 4nH_2O(5)$	2.153		

Table S1 Bond valence sum calculations for cobalt complexes $1\sim 5.$

Bonds	1	2	Bonds	3	Bonds	5
Co(1)-O(1)	2.087(2)	2.097(3)	Co(1)-O(1)	2.078(1)	Co(1) -O(1)	2.140(2)
Co(1)-O(5)	2.144(2)	2.127(3)	Co(1)-O(3a)	2.111(1)	Co(1)-O(4)	2.033(2)
Co(1)-O(9)	2.040(2)	2.010(2)	Co(1)-O(5)	2.033(1)	Co(1)-O(5)	2.107(2)
Co(1)-O(10)	2.052(2)	2.070(2)	Co(1)-O(1w)	2.160(2)	Co(1)-O(7)	2.084(2)
Co(1)-O(11)	2.047(2)	2.107(2)	Co(1)-O(2w)	2.091(1)	Co(1)-N(1)	2.217(2)
Co(1)-O(19)	2.136(2)	2.070(2)	Co(1)-O(3w)	2.059(1)	Co(1)-N(2)	2.156(2)
Co(2)-O(7)	2.068(2)	2.081(2)				
Co(2)-O(10)	2.090(2)	2.056(2)				
Co(2)-O(13)	2.132(2)	2.138(3)				
Co(2)-O(17)	2.128(2)	2.088(3)				
Co(2)-O(19)	2.065(2)	2.067(2)				
Co(2)-O(20)	1.994(2)	1.987(2)				

 $\begin{array}{ll} \mbox{Table S2.} & \mbox{Selected bond distances for } K_4 [Co_2(edtaO_2)_2] \cdot nH_2O \ [n = 6.5 \ (1), \ 10 \ (2)], \\ [Co_2(edtaO_2)(H_2O)_6]_n \cdot 2nH_2O(\textbf{3}) \ \mbox{and} \ \{Na_2 [Co(edta)]\}_n \cdot 4nH_2O \ \textbf{(5)} \end{array}$

Symmetry transformations: (a) x - 1, y, z.

D–H····A	D-H(Å)	H····A(Å)	D····A(Å)	D–H····A(°)
O1w–H…O3w	0.85(3)	1.97(3)	2.802(4)	168(3)
O1w–H…O5wa	0.84(2)	1.99(2)	2.823(5)	167(4)
O3w-HO10wb	0.85(3)	1.96(3)	2.789(5)	167(3)
O4w-HO7wc	0.84(2)	2.10(1)	2.925(5)	167(4)
O5w-HO4wa	0.85(2)	1.90(3)	2.719(5)	161(4)
O6w–H…O1wd	0.85(3)	2.07(3)	2.922(5)	177(2)
O8w-HO9we	0.85(3)	1.98(3)	2.825(5)	174(3)
O9w–HO7w	0.85(4)	2.20(4)	2.902(5)	140(3)
O10w H O1wc	0.85(3)	1.08(3)	2.704(5)	150(3)

Table S3. Selected bond distances and angles within the water clusters in $K_4[Co_2(edtaO_2)_2] \cdot 10H_2O(2)$.

Compounds	-CH ₂ N	-NCH ₂ CO ₂	-CO ₂
4	66.1(12.4)	67.9(7.8), 68.1(8.0)	184.4(5.9), 185.1(6.6)
[EDTA] ⁴⁻	53.7	60.1	178.5

Table S4. 13 C NMR spectral data (in ppm) for K[Co(edta)]·2H₂O (4) and K₄EDTA.