New Metal Chalcogenides Found in $Mn_{N-1}(Gd_{2}$. _x $ln_x)S_{N+2}$ (N = 3, 4, 5): Syntheses, Structures, and Magnetic Properties

I. C. Liang,^a C. Y. Weng,^a C. Huang,^a C. K. Chang,^b H. S. Sheu,^b J. G. Lin,^c and K. F. Hsu^{a,*}

^aDepartment of Chemistry, National Cheng Kung University, Tainan 701, Taiwan ^bNational Synchrotron Radiation Research Center, Hsinchu 300, Taiwan ^cCenter for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan

Table S1. Atomic coordinates, thermal parameters (Å²) and occupancies for 1, 1a, 2, and

3.

 Table S2.
 Selected bond distances (Å) for 1 and 1a.

 Table S3.
 Selected bond distances (Å) for 2 and 3.

Figure S1. (a) The SEM image of a tiny Gd_2S_3 crystal grew and embedded on the surface

of large columnar crystal **3**. (b) An enlargement image of the selected area (blue circle)

in (a).

Figure S2. The powder X-ray diffraction (PXRD) pattern of **1** and **1a** was measured by a Bruker AXS D2 phaser equipped with a Cu K_{α} tube (λ = 1.5406 Å) and a one-dimensional LYNXEYE detector.

Figure S3 The measured (blue) and simulated (red) PXRD patterns of **1**. The inset plot is an enlarged simulated pattern of **1** in 2 θ angles of 14–16 degree.

Figure S4 The measured (blue) and simulated (red) PXRD patterns of **3**. The blue labels of (hkl) denote the diffraction peaks promoted by a high resolution X-ray radiation ($\lambda = 0.7749$ Å). The purple labels of (hkl) denote some simulated diffraction peaks of **3**. The black stars denote the impurity.

Figure S5. The measured (blue) PXRD patterns of **3** and simulated (green) PXRD pattern of La_2S_3 -type Gd_2S_3 . The black stars denote the impurity.

Figure S6. The EDS measurements of (a) 1, (b) 2 and (c) 3.

Atom	x/a	y/b	z/c	U _{eq} ^a	occ.
			1		
Gd(1)	0	0.4711(1)	1/4	0.012(1)	1
Mn(2)/In(2')	0	0.7275(1)	0.3951(1)	0.013(1)	0.858(3)/0.142
Mn(3)/In(3')	1/2	1/2	1/2	0.011(1)	0.234(5)/0.766
S(1)	1/2	0.3140(1)	1/4	0.010(1)	1
S(2)	1/2	0.5859(1)	0.3550(1)	0.009(1)	1
S(3)	1/2	0.8614(1)	0.4476(1)	0.012(1)	1
			1a		
Gd(1)	0	0.4727(1)	1/4	0.016(1)	1
Mn(2)/Gd(2')	0	0.7276(1)	0.3963(1)	0.015(1)	0.765(2)/0.235
Mn(3)/In(3')	1/2	1/2	1/2	0.015(1)	0.514(5)/0.486
S(1)	1/2	0.3157(1)	1/4	0.015(1)	1
S(2)	1/2	0.5847(1)	0.3553(1)	0.012(1)	1
S(3)	1/2	0.8631(1)	0.4477(1)	0.017(1)	1
			2		
Gd(1)	0	0.3422(1)	1/4	0.015(1)	1
Mn(2)/Gd(2')	1/2	0.0936(1)	0.3721(1)	0.013(1)	0.556(2)/0.444
Mn(3)/Gd(3')	1/2	0.6389(1)	0.5414(1)	0.014(1)	0.947(2)/0.053
S(1)	1/2	0.1843(1)	1/4	0.014(1)	1
S(2)	1/2	0.4473(1)	0.3380(1)	0.011(1)	1
S(3)	1/2	0.7278(1)	0.4176(1)	0.014(1)	1
S(4)	0	1/2	1/2	0.013(1)	1
			3		
Gd(1)	0	0.2940(1)	3/4	0.014(1)	1
Mn(2)/Gd(2')	0	0.0426(1)	0.6452(1)	0.012(1)	0.578(2)/0.422
Mn(3)/Gd(3')	1/2	0.2749(1)	0.5715(1)	0.013(1)	0.961(2)/0.039
Mn(4)/Gd(4')	0	1/2	1/2	0.014(1)	0.929(2)/0.071
S(1)	1/2	0.4525(1)	3/4	0.013(1)	1
S(2)	1/2	0.1888(1)	0.6744(1)	0.010(1)	1
S(3)	0	0.4087(1)	0.6061(1)	0.013(1)	1
S(4)	0	0.1375(1)	0.5344(1)	0.011(1)	1

Table S1. Atomic coordinates, thermal parameters (Å²) and occupancies for 1, 1a, 2, and**3**.

 $\overline{{}^{a}U_{eq}}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	1		1a	
Gd(1)–S(1) ^a	2.718 (1)	Gd(1)–S(1) ^a	2.723(2)	
Gd(1)-S(1)	2.718(1)	Gd(1)–S(1)	2.723(2)	
Gd(1)–S(2)	2.875(1)	Gd(1)–S(2)	2.870 (1)	
Gd(1)–S(2) ^b	2.875(1)	Gd(1)–S(2) ^b	2.870(1)	
Gd(1)–S(2) ^c	2.875(1)	Gd(1)–S(2) ^c	2.870(1)	
Gd(1)–S(2) ^a	2.875(1)	Gd(1)–S(2) ^a	2.870(1)	
Gd(1)–S _{Ave.}	2.823(1)	Gd(1)–S _{Ave.}	2.821(1)	
M(2)–S(1) ^e	2.491(1)	M(2)–S(1) ^e	2.535(1)	
M(2)–S(3)	2.649(1)	M(2)–S(3)	2.662(1)	
M(2)–S(3) ^a	2.649(1)	M(2)–S(3) ^a	2.662(1)	
M(2)–S(2) ^a	2.657(1)	M(2)–S(2) ^a	2.678(1)	
M(2)–S(2)	2.657(1)	M(2)–S(2)	2.678(1)	
M(2)–S(3) ^f	2.674(2)	M(2)–S(3) ^f	2.685(2)	
M(2)–S _{Ave.}	2.630(1)	M(2)–S _{Ave.}	2.650(1)	
M(3)–S(2) ^e	2.486(2)	M(3)–S(2) ^f	2.494(1)	
M(3)–S(2) ^f	2.486(2)	M(3)–S(2) ^e	2.494(1)	
M(3)–S(3) ^g	2.684(1)	M(3)–S(3) ^g	2.678(1)	
M(3)–S(3) ^a	2.684(1)	M(3)–S(3) ^a	2.678(1)	
M(3)–S(3) ^h	2.684(1)	M(3)–S(3) ^h	2.678(1)	
M(3)–S(3)	2.684(1)	M(3)–S(3)	2.678(1)	
M(3)–S _{Ave.}	2.618(1)	M(3)–S _{Ave.}	2.617(1)	

 Table S2.
 Selected bond distances (Å) for 1 and 1a.

Symmetry code: ^{*a*}x-1, y, z; ^{*b*}x-1, y, -z+1/2; ^{*c*}x, y, -z+1/2; ^{*d*}x+1, y, z; ^{*e*}x-1/2, y+1/2, z; ^{*f*}-x+1/2, -y+3/2, -z+1; ^{*g*}-x+1, -y+2, -z+1; ^{*h*}-x, -y+2, -z+1; ^{*i*}x+1/2, y-1/2, -z+1/2; ^{*j*}x+1/2, y-1/2, z.

	2		3
Gd(1)-S(1) ^a	2.733(1)	Gd(1)-S(1)	2.731(1)
Gd(1)-S(1)	2.733(1)	Gd(1)-S(1) ^a	2.731(1)
Gd(1)-S(2)	2.850(1)	Gd(1)-S(2) ^a	2.848(1)
Gd(1)-S(2) ^b	2.850(1)	Gd(1)-S(2) ^o	2.848(1)
Gd(1)-S(2) ^c	2.850(1)	Gd(1)-S(2) ^p	2.848(1)
Gd(1)-S(2) ^a	2.850(1)	Gd(1)-S(2)	2.848(1)
Gd(1)–S _{Ave.}	2.811(1)	Gd(1)–S _{Ave.}	2.809(1)
M(2)-S(1)	2.595(1)	M(2)-S(1) ^h	2.593(1)
M(2)-S(3) ^g	2.673(1)	M(2)-S(3) ^h	2.665(1)
M(2)-S(3) ^h	2.673(1)	M(2)-S(3) ^g	2.665(1)
M(2)-S(2) ^h	2.709(1)	M(2)-S(2)	2.702(1)
M(2)-S(2) ^g	2.709(1)	M(2)-S(2) ^a	2.702(1)
M(2)-S(4) ^g	2.710(1)	M(2)-S(4)	2.737(1)
M(2)–S _{Ave.}	2.678(1)	M(2)–S _{Ave.}	2.677(1)
M(3)-S(2) ⁱ	2.547(1)	M(3)-S(2)	2.531 (1)
M(3)-S(3)	2.613(1)	M(3)-S(4) ⁿ	2.602(1)
M(3)-S(3) ^j	2.638(1)	M(3)-S(3) ^d	2.632(1)
M(3)-S(3) ^k	2.638(1)	M(3)-S(3)	2.632(1)
M(3)-S(4)	2.685(1)	M(3)-S(4)	2.678(1)
M(3)-S(4) ^d	2.685(1)	M(3)-S(4) ^d	2.678(1)
M(3)–S _{Ave.}	2.634(1)	M(3)–S _{Ave.}	2.626(1)
		M(4)-S(3) ^m	2.624(1)
		M(4)-S(3)	2.624(1)
		M(4)-S(4) ^q	2.660(1)
		M(4)-S(4) [/]	2.660(1)
		M(4)-S(4) ⁿ	2.660(1)
		M(4)-S(4) ^e	2.660(1)
		M(4)–S _{Ave.}	2.648(1)

Table S3. Selected bond distances (Å) for 2 and 3.

Symmetry code: ${}^{a}x-1$, y, z; ${}^{b}x-1$, y, -z+1/2; ${}^{c}x$, y, -z+1/2; ${}^{d}x+1$, y, z; ${}^{e}x-1/2$, y+1/2, z; ${}^{f}x-1/2$, y+1/2, -z+1/2; ${}^{g}x+1/2$, y-1/2, z; ${}^{h}x-1/2$, y-1/2, z; ${}^{i}-x+1$, -y+1, -z+1; ${}^{j}-x+3/2$, -y+3/2, -z+1; ${}^{k}-x+1/2$, -y+3/2, -z+1; ${}^{i}x+1/2$, y+1/2, z; ${}^{m}-x$, -y+1, -z+1; ${}^{n}-x+1/2$, -y+1/2, -z+1; ${}^{o}x$, y, -z+3/2; ${}^{p}x-1$, y, -z+3/2; ${}^{q}-x-1/2$, -y+1/2, -z+1; ${}^{r}x+1/2$, y+1/2, -z+3/2.

Figure S1. (a) The SEM image of a tiny Gd_2S_3 crystal grew and embedded on the surface of large columnar crystal **3**. (b) An enlargement image of the selected area (blue circle) in (a).

(a)

Figure S2. The powder X-ray diffraction (PXRD) pattern of **1** and **1a** was measured by a Bruker AXS D2 phaser equipped with a Cu K_{α} tube (λ = 1.5406 Å) and a one-dimensional LYNXEYE detector.

Figure S3. The measured (blue) and simulated (red) PXRD patterns of **1**. The inset plot is an enlarged simulated pattern of 1 in 2θ angles of 14–16 degree.

Figure S4. The measured (blue) and simulated (red) PXRD patterns of **3**. The blue labels of (hkl) denote the diffraction peaks promoted by a high resolution X-ray radiation ($\lambda = 0.7749$ Å). The purple labels of (hkl) denote some simulated diffraction peaks of **3**. The black stars denote the impurity.

Figure S5. The measured (blue) PXRD patterns of **3** and simulated (green) PXRD pattern of La_2S_3 -type Gd_2S_3 . The black stars denote the impurity.

Figure S6. The EDS measurements of (a) 1, (b) 2 and (c) 3.