Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting information

W@WO3 Ohmic Contact Induces High-efficiency Photooxidation

Performance

Fangxu Wan[†], Lina Kong[†], Changhua Wang, Yingying Li, Yichun Liu, and Xintong

Zhang*

Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of

UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University,

5268 RenminStreet, Changchun 130024, China

*E-mail: <u>xtzhang@nenu.edu.cn;</u> Fax: +86 431 85099772; Tel: +8643185099772

[†]The two authors contributed equally to this paper.

Figure S1. SEM images of the W-WO₃•H₂O composites. The W-WO₃ composites were denoted as WH-X-Y (X mol/L represented for the nitric acid concentration which varied from 0.5-14 mol/L; Y hour represented for the immersion time of tungsten powder in the HNO₃ aqueous solution and the time prolonged from 0.5 h to 12 h) (a) WH-0.5-2; (b) WH-1.5-2, the inset provides the high-resolution SEM image of the WO₃•H₂O nanosheet on the surface of tungsten; (c) WH-3-2; (d) WH-5-2; (e) WH-14-2; (f) WH-1.5-0.5; (g) WH-1.5-4; (h) WH-1.5-6; (i) WH-1.5-12.

Figure S2. TEM image of the WO₃•H₂O core-shell composites. (a) WH-1.5-0.5; (b) WH-1.5-2; (c) WH-1.5-4; (d) HRTEM image and the corresponding SAED pattern (inset) of the WO₃•H₂O nanosheets of the WH-1.5-2 sample.

Figure S3. (a) degradation curve of acetaldehyde and (b) generation curve of CO_2 for the W-X-Y samples in dark condition, (c) degradation curve of acetaldehyde and (d) generation curve of CO_2 under UV light irradiation without catalyst.

Figure S4. (a) photocatalytic degradation curve and (b) generation of CO_2 curve during the photocatalytic degradation of acetaldehyde for W-1.5-0.5, pure WO₃ (0.033g) and the mixture of W and WO₃ (0.033g WO₃ + 0.967g W).

Table S1. The rate constant and mineralization yield for W-1.5-0.5, pure WO₃ and the mixture of W and WO₃.

	W-1.5-0.5	pure WO ₃	Mixture of W/WO ₃
Rate constant	0.02465	0.02475	0.01911
Mineralization yield	0.28695	0.42195	0.26813

Figure S5. The I-V curve of Pt-WO₃ contact.