Supplementary Information

The supplementary information contain:

- The deconvolution of spectra in individual components
- Equations used for the quantifications

Figure S1. Quantitative ${ }^{29} \mathrm{Si}$ echo-MAS NMR spectra (in blue) collected for the studied hybrid glasses. In red are models obtained for each sample from a simultaneous fit of multiple spectra (including ${ }^{29} \mathrm{Si}$ echo-MAS with different recycling delays and ${ }^{29} \mathrm{Si}\left[{ }^{1} \mathrm{H}\right]$ CP-MAS spectra with different contact times, not shown) with a single set of parameters (number of peaks, positions, width and Gaussian/Lorentzian ratio). The individual components used for the fits are shown in black below.

Equations used for the quantifications.

Fixing an arbitrary number of C atoms $n_{\mathrm{C}, \text { tot }}$ (e.g. $n_{\mathrm{C}, \text { tot }}=100$), one can then derive the number of carbons attributed to $\mathrm{Me}_{2} \mathrm{Si}$ and MeSi groups that can be expected based on the ratios of MTES and DMDES precursors used for the synthesis ($n_{\text {MTES }} / n_{\text {DMDES }}$). These numbers need to take into account the relative integrated intensities of carbon signals in $\underline{\mathbf{C}} \mathrm{H}_{2}-\mathrm{O}$ and $\mathbf{C H}_{3}-\mathrm{CH}_{2}-$ O environments: $I_{C, \mathrm{CH}_{2}-\mathrm{O}}$ and $I_{C, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}}$.
$n_{C, M e_{2} S i}=I_{C, M e}^{2} S i=n_{C, \text { tot }}=n_{C, \text { tot }} \frac{1-I_{C, C H_{2}-O}-I_{C, C H_{3}-C H_{2}-O}}{1+0.5\left(n_{M T E S} / n_{D M D E S}\right)}$
where the 0.5 comes from there being 2 C atoms per DMDES molecule. Similarly:
$n_{C, M e S i}=I_{C, M e S i} n_{C, \text { tot }}=n_{C, \text { tot }} \frac{1-I_{C, C H_{2}-O}-I_{C, C H_{3}-C H_{2}-O}}{1+2\left(n_{D M D E S} / n_{M T E S}\right)}$
These numbers impose in turn the number of Si atoms $n_{\mathrm{Si}, \text { tot }}$., which relates to the relative integrated intensities of Si T^{n} and D^{n} species:
$n_{S i, t o t}=n_{S i, t o t} \sum_{i=0 \ldots 3} I_{S i, T^{i}}+n_{S i, \text { tot }} \sum_{i=0 \ldots 2} I_{S i, D^{i}}=n_{C, M e S i}+0.5 n_{C, M e_{2} S i}$
From there we can compare the number of unreacted Si-O-Et groups, given by:
$n_{O-C H_{2}-C H_{3}}=n_{C, t o t} I_{C, C H_{3}-C H_{2}-O}=n_{C, t o t} I_{C, C H_{2}-O}$
with the number of incompletely-condensed Si sites, i.e. D^{n} with $\mathrm{n}<2$ and T^{n} with $\mathrm{n}<3$. (This comparison is simple here because we observe only D^{1} and T^{2} sites, meaning that there is no more than one uncondensed O atom per Si):

$$
\sum_{i=0 \ldots 1} n_{S i, D^{i}}+\sum_{i=0 \ldots 2} n_{S i, T^{i}}=\left(n_{C, M e S i}+0.5 n_{C, M e_{2} S i}\right)\left(\sum_{i=0 \ldots 3} I_{S i, T^{i}}+n_{S i, t o t} \sum_{i=0 \ldots 2} I_{S i, D^{i}}\right)
$$

The difference between these numbers should correspond to the number of silanol groups.

