Supporting Information for:

Sterically directed Nitronate Complexes of 2,6-Di*tert*-Butyl-4-Nitrophenoxide with Cu(II) and Zn(II) and Their H-Atom Transfer Reactivity

Thomas R. Porter,^{a,b} Ellen C. Hayes,^a Werner Kaminsky,^a and James M. Mayer^{a,c}*

^aUniversity of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195, United States.

^bLaboratoire d'Electrochimie Moléculaire, Université Paris Diderot, 15 Rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France

^cDepartment of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, United States.

*james.mayer@yale.edu

Contents:

1.	Crystallographic Data for (1), (2), (3) and Tp ^{tBu} Cu ^{II} -OAc	S2
2.	Optical Spectra of (1) and (3)	S8
3.	¹ H NMR Spectra of (1) and (3)	S10
4.	Cyclic Voltammetry of (1)	S12
5.	¹ H NMR of ¹ / ₂ $[Tp^{tBu}Cu^{I}]_{2} + {}^{t}Bu_{2}NPArO^{\bullet}$ (No Reaction)	S13
6.	¹ H NMR of ¹ / ₂ $[Tp'^{Bu}Cu^{I}]_{2} + O_{2}N'Bu_{2}C_{6}H_{2}OH$ (No Reaction)	S14
7.	Optical and ¹ H NMR Data for the Completed Reaction Between $\frac{1}{2}$ [Tp ^{<i>t</i>Bu} Cu ₁] ₂ , O ₂ N'Bu ₂ C ₆ H ₂ OH and'Bu ₃ ArO [•]	S15
8.	¹ H NMR Data for the Completed Reaction Between (1) and TEMPOH	S17

1. Crystallographic Data for (1), (2), (3) and Tp^{tBu}Cu^{II}-OAc

1.A. Crystallographic Data for (1)

General Procedure

A green prism, measuring 0.18 x 0.10 x 0.05 mm³ was mounted on a loop with oil. Data was collected at -173°C on a Bruker APEX II single crystal X-ray diffractometer, Mo-radiation.

Crystal-to-detector distance was 40 mm and exposure time was 10 seconds per frame for all sets. The scan width was 0.5° . Data collection was 97.7% complete to 25° in 9. A total of 51079 reflections were collected covering the indices, h = -15 to 15, k = -13 to 13, 1 = -22 to 22. 9047 reflections were symmetry independent and the $R_{int} = 0.0723$ indicated that the data was of average quality (0.07). Indexing and unit cell refinement indicated a primitive monoclinic lattice. The space group was found to be P 2_1 (No. 4).

The data was integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker.

Solution by direct methods (SHELXS, SIR97) produced a complete heavy atom phasing model consistent with the proposed structure. The structure was completed by difference Fourier synthesis with SHELXL97. Scattering factors are from Waasmair and Kirfel.¹ Hydrogen atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms with C---H distances in the range 0.95-1.00 Angstrom. Isotropic thermal parameters U_{eq} were fixed such that they were 1.2U_{eq} of their parent atom Ueq for CH's and 1.5U_{eq} of their parent atom U_{eq} in case of methyl groups. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares.

Table SI. Crystanographic data for (1) pro	vided.	
Empirical formula	$C_{35}H_{54}BCuN_7O_3$	
Formula weight	695.20	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 2 ₁	
Unit cell dimensions	a = 11.3921(4) Å	α= 90°.
	b = 10.0553(4) Å	$\beta = 98.477(2)^{\circ}$.
	c = 16.8141(7) Å	$\gamma = 90^{\circ}$.
Volume	1905.03(13) Å ³	
Ζ	2	
Density (calculated)	1.212 Mg/m ³	
Absorption coefficient	0.615 mm ⁻¹	
F(000)	742	
Crystal size	0.18 x 0.10 x 0.05 mm ³	
Theta range for data collection	2.33 to 28.34°.	
Index ranges	-15<=h<=15, -12<=k<=12	3, -22<=l<=22
Reflections collected	51079	
Independent reflections	9047 [$R_{int} = 0.0723$]	
Completeness to theta = 25.00°	97.7 %	
Max. and min. transmission	0.9699 and 0.8974	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	9047 / 115 / 439	
Goodness-of-fit on F ²	1.080	
Final R indices [I>2sigma(I)]	R1 = 0.0738, WR2 = 0.159	92
R indices (all data)	R1 = 0.0976, $wR2 = 0.17$	12
Absolute structure parameter	0.035(18)	
Largest diff. peak and hole	1.731 and -1.010 e.Å ⁻³	

 Table S1: Crystallographic data for (1) provided.

1.B. Crystallographic Data For (2)

General Procedure

A yellow prism, measuring $0.15 \ge 0.15 \ge 0.10 \text{ mm}^3$ was mounted on a loop with oil. Data was collected at -173°C on a Bruker APEX II single crystal X-ray diffractometer, Mo-radiation.

Crystal-to-detector distance was 40 mm and exposure time was 10 seconds per frame for all sets. The scan width was 0.5° . Data collection was 100% complete to 25° in ϑ . A total of 140212 reflections were collected covering the indices, h = -18 to 18, k = -19 to 19, 1 = -26 to 26. 9503 reflections were symmetry independent and the R_{int} = 0.0442 indicated that the data was of better than average quality (0.07). Indexing and unit cell refinement indicated a primitive monoclinic lattice. The space group was found to be P $2_1/c$ (No. 14).

The data was integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker.

Solution by direct methods (SHELXS, SIR97) produced a complete heavy atom phasing model consistent with the proposed structure. The structure was completed by difference Fourier synthesis with SHELXL97. Scattering factors are from Waasmair and Kirfel.¹ Hydrogen atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms with C---H distances in the range 0.95-1.00 Angstrom. Isotropic thermal parameters U_{eq} were fixed such that they were 1.2U_{eq} of their parent atom Ueq for CH's and 1.5U_{eq} of their parent atom U_{eq} in case of methyl groups. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares.

Table S2: Crystallographic data for (2) provided.			
Empirical formula	C ₃₅ H ₅₄ BN ₇ O ₃ Zn		
Formula weight	697.03		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 2 ₁ /c		
Unit cell dimensions	a = 13.5042(10) Å	α=90°.	
	b = 14.5848(12) Å	$\beta = 103.397(4)^{\circ}$.	
	c = 19.8333(16) Å	$\gamma = 90^{\circ}$.	
Volume	3800.0(5) Å ³		
Ζ	4		
Density (calculated)	1.218 Mg/m ³		
Absorption coefficient	0.688 mm ⁻¹		
F(000)	1488		
Crystal size	0.15 x 0.15 x 0.10 mm ³		
Theta range for data collection	2.09 to 28.47°.		
Index ranges	-18<=h<=18, -19<=k<=19	9, -26<=l<=26	
Reflections collected	140212		
Independent reflections	9503 $[R_{int} = 0.0442]$		
Completeness to theta = 25.00°	100.0 %		
Max. and min. transmission	0.9344 and 0.9038		
Refinement method	Full-matrix least-squares of	on F ²	
Data / restraints / parameters	9503 / 0 / 439		
Goodness-of-fit on F ²	1.037		
Final R indices [I>2sigma(I)]	R1 = 0.0274, WR2 = 0.065	51	
R indices (all data)	R1 = 0.0369, wR2 = 0.069	96	
Largest diff. peak and hole	0.376 and -0.366 e.Å ⁻³		

1.C. Crystallographic Data For (3)

General Procedure

A dichroic brown/green needle, measuring $0.10 \ge 0.03 \ge 0.03 \text{ mm}^3$ was mounted on a loop with oil. Data was collected at -173°C on a Bruker APEX II single crystal X-ray diffractometer, Moradiation.

Crystal-to-detector distance was 40 mm and exposure time was 10 seconds per frame for all sets. The scan width was 0.5° . Data collection was 100% complete to 25° in 9. A total of 41198 reflections were collected covering the indices, h = -26 to 26, k = -10 to 10, 1 = -24 to 24. 7126 reflections were symmetry independent and the $R_{int} = 0.0543$ indicated that the data was of good quality. Indexing and unit cell refinement indicated a C-centered monoclinic lattice. The space group was found to be C c (No. 9).

The data was integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker.

Solution by direct methods (SHELXS, SIR97) produced a complete heavy atom phasing model consistent with the proposed structure. The structure was completed by difference Fourier synthesis with SHELXL97. Scattering factors are from Waasmair and Kirfel.¹ Hydrogen atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms with C---H distances in the range 0.95-1.00 Angstrom. Isotropic thermal parameters U_{eq} were fixed such that they were 1.2U_{eq} of their parent atom Ueq for CH's and 1.5U_{eq} of their parent atom U_{eq} in case of methyl groups. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares.

Empirical formula	$C_{27}H_{38}BCuN_7O_3$	
Formula weight	582.99	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	Cc	
Unit cell dimensions	a = 19.8577(9) Å	α= 90°.
	b = 8.0385(3) Å	$\beta = 102.001(4)^{\circ}$.
	c = 18.2723(9) Å	$\gamma = 90^{\circ}$.
Volume	$2853.0(2) Å^{3}$,
Ζ	4	
Density (calculated)	1.357 Mg/m ³	
Absorption coefficient	0.807 mm ⁻¹	
F(000)	1228	
Crystal size	0.10 x 0.03 x 0.03 mm ³	
Theta range for data collection	2.10 to 28.38°.	
Index ranges	-26<=h<=26, -10<=k<=10), -24<=l<=24
Reflections collected	41198	
Independent reflections	7126 $[R_{int} = 0.0543]$	
Completeness to theta = 25.00°	100.0 %	
Max. and min. transmission	0.9762 and 0.9237	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	7126 / 2 / 361	
Goodness-of-fit on F ²	1.044	
Final R indices [I>2sigma(I)]	R1 = 0.0304, wR2 = 0.062	15
R indices (all data)	R1 = 0.0381, WR2 = 0.064	41
Absolute structure parameter	0.010(7)	
Largest diff. peak and hole	0.272 and -0.346 e.Å ⁻³	

1.D. Crystallographic data for Tp^{tBu}Cu^{II}-κ²-OAc

Figure S1. ORTEP of $Tp^{tBu}Cu^{II}-\kappa^2$ -OAc with select atom labels showing 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Primary Metal Coordination Sphere			
N1-Cu1	2.3580(15)	N3'-Cu1	1.9957(10)
N1'-Cu1	2.3580(15)	O1-Cu	2.0251(9)
N3-Cu1	1.9957(10)	O1'-Cu	2.0251(9)
N1-Cu-N3	92.75(4)	N1-Cu1-O1'	98.72(4)
N2-Zn1-N6	94.78(18)	N3-Cu1-N3'	91.94(6)
N1-Cu-N3'	92.75(4)	O1-Cu-O1'	64.81(5)
N1-Cu1-O1	98.72(4)		

Table S4. Select bond le	engths (Å) and	l angles (deg)	of Tp ^{<i>t</i>Bu} Cu ^{II} -κ ² -OAc
--------------------------	----------------	----------------	---

General Procedure

A green prism, measuring $0.29 \ge 0.25 \ge 0.10 \text{ mm}^3$ was mounted on a loop with oil. Data was collected at -173°C on a Bruker APEX II single crystal X-ray diffractometer, Mo-radiation.

Crystal-to-detector distance was 40 mm and exposure time was 10 seconds per frame for all sets. The scan width was 0.5° . Data collection was 100% complete to 25° in 9. A total of 83201 reflections were collected covering the indices, h = -21 to 21, k = -20 to 20, 1 = -13 to 13. 3313 reflections were symmetry independent and the R_{int} = 0.0407 indicated that the data was good (average quality 0.07). Indexing and unit cell refinement indicated a primitive orthorhombic lattice. The space group was found to be P n m a (No.62).

The data was integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker. $^{\rm i}$

Solution by direct methods (SHELXS, SIR97) produced a complete heavy atom phasing model consistent with the proposed structure. The structure was completed by difference Fourier synthesis with SHELXL97. Scattering factors are from Waasmair and Kirfel.¹ Hydrogen atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms with C---H distances in the range 0.95-1.00 Angstrom. Isotropic thermal parameters U_{eq} were fixed such that they were 1.2 U_{eq} of their parent atom Ueq for CH's and 1.5 U_{eq} of their parent atom U_{eq} in case of methyl groups. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares.

Table S5: Crystallographic data for Tp^{*t*Bu}Cu^{II}-OAc provided.

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	$C_{23}H_{37}BCuN_6O_2$ 503.94 100(2) K 0.71073 Å Orthorhombic P n m a a = 15.964(3) Å b = 15.477(3) Å c = 10.284(2) Å	α= 90.000°. β= 90.000°. γ = 90.000°.
Volume Z	2540.9(8) Å ³ 4	
Density (calculated)	1.317 Mg/m ³	
Absorption coefficient F(000)	0.891 mm ⁻¹ 1068	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.00° Max. and min. transmission	0.29 x 0.25 x 0.10 mm ³ 2.36 to 28.49°. -21<=h<=21, -20<=k<=20, - 83201 3313 [R(int) = 0.0407] 100.0 % 0.9162 and 0.7823	-13<=1<=13
Refinement method Data / restraints / parameters	Full-matrix least-squares on 3313 / 0 / 172	F ²
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	1.048 R1 = 0.0232, wR2 = 0.0649 R1 = 0.0248, wR2 = 0.0665 0.400 and -0.413 e $Å^{-3}$	
Laibest and pour and note	0.100 unu 0.115 0.11	

2. Optical Spectra of (1) and (3)

2.A. Optical Spectrum of (1)

Figure S2. Optical spectrum of 1 mM (1) in benzene at room temperature. $\lambda_{max} = 796$ nm (180 M⁻¹ cm⁻¹)

2.B. Optical Spectrum of (3)

Figure S3. Optical spectrum of 1 mM (3) in benzene at room temperature. $\lambda_{max} = 583$ nm (430 M⁻¹ cm⁻¹), $\lambda_{max} = 667$ nm (400 M⁻¹ cm⁻¹), $\lambda_{max} = 830$ nm (130 M⁻¹ cm⁻¹).

3. ¹H NMR Spectra of (1) and (3)

3.A. ¹H NMR Spectrum of (1)

Figure S4. ¹H NMR of (1) in benzene- d_6 . Signals for (1) are denoted with \clubsuit . Residual solvent signal and hexamethylbenzene internal standard are shown with * and †, respectfully.

3.B. ¹H NMR Spectrum of (3)

Figure S5. ¹H NMR Spectrum of (3) in dichloromethane- d_2 . The broad feature of (3) is indicated by \clubsuit . Residual solvent signal is shown by \ast . Signals from solvents used in synthesis and crystallizations are shown by \diamond (benzene), \dagger (ether) and \bigstar (pentane).

4. Cyclic Voltammograms of (1) in Dichloromethane

Figure S6. Cyclic Voltammograms of (1) (~1 mM) in dichloromethane with 0.1 mM [$^{n}Bu_{4}N$][PF₆] with scan rate of 100 mV s⁻¹. Setup consisted of a 5 mm diameter glassy carbon working electrode and platinum auxiliary electrode. Potential is referenced to the ferrocene/ferrocenium internal standard. $E_{c,p} = -0.84 \pm 0.05$ V; $E_{a,p} = 1.10 \pm 0.05$ V; both vs. Fc^{+/0}.

5. ¹H NMR of ¹/₂ [Tp^{*t*Bu}Cu^I]₂ + ^{*t*}Bu₂NPArO[•] (No Reaction)

$\frac{1}{2} [Tp^{fBu}Cu^{I}]_{2} + {}^{f}Bu_{2}NPArO^{\bullet} \rightarrow NO \text{ REACTION}$

In a J. Young NMR tube, 14 mM $[Tp^{tBu}Cu^{I}]_{2}$ in benzene- d_{6} was combined with 28 mM 'Bu₂NPArO[•] (2,6-di-*tert*-butyl-4-(4'-nitrophenyl)phenoxyl radical). After ~ 1 hour the ¹H NMR spectrum of the reaction solution was collected. Overlay with the ¹H NMR spectrum of untreated $[Tp^{tBu}Cu^{I}]_{2}$ shows no reaction occurs between ¹/₂ $[Tp^{tBu}Cu^{I}]_{2}$ and 'Bu₂NPArO[•] under these conditions. It should be noted that the broad features arising from $[Tp^{tBu}Cu^{I}]_{2}$ are due to fluxional processes as previously reported.²

Figure S7. ¹H NMR Spectrum of ¹/₂ $[Tp^{tBu}Cu^{I}]_{2}$ and ^tBu₂NPArO[•] in benzene- d_{6} (red) and ¹H NMR spectrum of $[Tp^{tBu}Cu^{I}]_{2}$ in benzene- d_{6} (turquoise). Additional sharp peaks observed in the spectrum of the former are due to diamagnetic impurities in ^tBu₂NPArO[•] while the baseline discrepancy between ~8 and 5.5 ppm is due to the broad signal associated with ^tBu₂NPArO[•]. Residual solvent signal is denoted with #.

(2) Carrier, S. M.; Ruggiero, C. E.; Houser, R. P.; Tolman, W. B. Inorg. Chem. 1993, 32, 4889.

6. ¹H NMR of ¹/₂ [Tp^{tBu}Cu^I]₂ + O₂N^tBu₂C₆H₂OH (No Reaction)

 $\frac{1}{2}$ [Tp^{tBu}Cu^I]₂ + O₂N^tBu₂C₆H₂OH \rightarrow NO REACTION

In a J. Young NMR tube, 2.5 mM $[Tp^{tBu}Cu^{I}]_{2}$ in toluene- d_{8} was combined with 5 mM $O_{2}N^{t}Bu_{2}C_{6}H_{2}OH$. After ~ 1 hour the ¹H NMR spectrum of the reaction solution was collected. Overlay with the ¹H NMR spectrum of untreated $[Tp^{tBu}Cu^{I}]_{2}$ shows no reaction occurs between $\frac{1}{2}[Tp^{tBu}Cu^{I}]_{2}$ and $O_{2}N^{t}Bu_{2}C_{6}H_{2}OH$ under these conditions.

Figure S8. ¹H NMR Spectrum of ¹/₂ $[Tp'^{Bu}Cu^{I}]_{2}$ and $O_{2}N'Bu_{2}C_{6}H_{2}OH$ in toluene- d_{8} (red) and ¹H NMR spectrum of $[Tp'^{Bu}Cu^{I}]_{2}$ in toluene- d_{8} (turquoise). $O_{2}N'Bu_{2}C_{6}H_{2}OH$ is show with * and the residual solvent peaks are denoted with #.

7. Optical and ¹H NMR Data for the Completed Reaction Between ¹/₂ [Tp^{*i*Bu}Cu₁]₂, O₂N^{*i*}Bu₂C₆H₂OH and^{*i*}Bu₃ArO[•]

 $\frac{1}{2} [Tp^{tBu}Cu^{l}]_{2} + O_{2}N^{t}Bu_{2}C_{6}H_{2}OH + {}^{t}Bu_{3}ArO^{\bullet} \rightarrow Tp^{tBu}Cu^{ll}-O_{2}N^{t}Bu_{2}C_{6}H_{2}O + {}^{t}Bu_{3}ArOH \text{ (partial yield of both)}]$

In a J. Young NMR tube, 6 mM $[Tp^{tBu}Cu^{I}]_{2}$ in benzene- d_{6} containing hexamethylbenzene as an internal standard was combined with 12 mM $O_{2}N'Bu_{2}C_{6}H_{2}OH$ followed by 12 mM 'Bu₃ArO'. After ~ 3 hours the ¹H NMR spectrum showed the appearance of $Tp^{tBu}Cu^{II}O_{2}N'Bu_{2}C_{6}H_{2}O$ and 'Bu₃ArO–H in ~50 and 80% respectively. Approximately 40% of $O_{2}N'Bu_{2}C_{6}H_{2}O$ –H remained at the end of the reaction.

Figure S9. ¹H NMR Spectrum of the completed reaction between ¹/₂ $[Tp^{tBu}Cu^{I}]_2$, $O_2N'Bu_2C_6H_2OH$ and 'Bu₃ArO' in benzene- d_6 . $Tp^{tBu}Cu^{II}$ - $ON_2'Bu_3C_6H_2O$ is shown with \bigstar , 'Bu₃ArO-H is shown with \ddagger , and $O_2N'Bu_2C_6H_2OH$ is show with \ast . The residual solvent peak and hexamethylbenzene are denoted by # and \S , respectively.

To a 1 cm quartz cuvette containing $[Tp^{tBu}Cu^{I}]_{2}$ and $O_{2}N'Bu_{2}C_{6}H_{2}OH$ in benzene was added 'Bu₃ArO' through a gastight septum via a gastight syringe (final concentration of all species was 2.5 mM, 5 mM and 5 mM, respectively). The reaction reached completion after ~1 hour as determined by UV/Vis spectroscopy (see main text Figure 2). Overlay of the spectrum of the completed reaction with a spectrum of independently prepared $Tp^{tBu}Cu^{II}-O_{2}N'Bu_{2}C_{6}H_{2}O$ (normalized at 800 nm) shows $Tp^{tBu}Cu^{II}-O_{2}N'Bu_{2}C_{6}H_{2}O$ was generated in roughly 60% yield.

Figure S10. Optical spectrum of the completed reaction between 2.5 mM $[Tp'^{Bu}Cu^{I}]_{2}$, 5 mM $O_2N'Bu_2C_6H_2O-H$ and 5 mM 'Bu₃ArO' in benzene (blue). Overlay (red) shows the spectrum of independently prepared $Tp'^{Bu}Cu^{II}O_2N'Bu_2C_6H_2O$ in benzene normalized to match the intensity of the peak observed in the reaction mixture at 800 nm.

8. ¹H NMR of Tp^{tBu}Cu^{II}O₂N^tBu₂C₆H₂O + TEMPO-H

$\mathsf{T}p^{t\mathsf{Bu}}\mathsf{Cu}^{ll}-\mathsf{O}_2\mathsf{N}^t\mathsf{Bu}_2\mathsf{C}_6\mathsf{H}_2\mathsf{O}\mathsf{H} + \mathsf{T}\mathsf{E}\mathsf{M}\mathsf{P}\mathsf{O}-\mathsf{H} \to \frac{1}{2}\,[\mathsf{T}p^{t\mathsf{Bu}}\mathsf{Cu}^l]_2 + \mathsf{O}_2\mathsf{N}^t\mathsf{Bu}_2\mathsf{C}_6\mathsf{H}_2\mathsf{O}\mathsf{H} + \mathsf{T}\mathsf{E}\mathsf{M}\mathsf{P}\mathsf{O}$

In a J. Young NMR tube, 12 mM Tp^{tBu}Cu^{II}-O₂N^{tBu}2C₆H₂OH in benzene-*d*₆ was combined with 12 mM TEMPO–H. After ~ 1 hour, the solution had changed colors from dark blue-green to light pink. The ¹H NMR spectrum displayed signals for [Tp^{tBu}Cu^I]₂ as well as O₂N^{tBu}2C₆H₂O–H. Integration vs a hexamethylbenzene internal standard indicates the reactants were converted to products in quantitative yield.

Figure S11. ¹H NMR spectrum of the completed reaction between $Tp^{tBu}Cu^{II}$ -ON₂ ${}^{t}Bu_{3}C_{6}H_{2}O$ and TEMPO–H generating ${}^{1}_{2}[Tp^{tBu}Cu^{I}]_{2}$, O₂N ${}^{t}Bu_{2}C_{6}H_{2}O$ –H and TEMPO. $[Tp^{tBu}Cu^{I}]_{2}$ is shown with \ddagger , and O₂N ${}^{t}Bu_{2}C_{6}H_{2}OH$ is show with \ddagger . The residual solvent peak and hexamethylbenzene are denoted by # and \$, respectively.