Electronic Supplementary Material

A ruthenium tellurocarbonyl (CTe) complex with a cyclopentadienyl ligand: Systematic studies of a series of the chalcogenocarbonyl complexes [CpRuCl(CE)(H₂IMes)] (E = O, S, Se, Te)

Ayumi Suzuki,^a Takahiro Arai,^b Kota Ikenaga,^b Yuichiro Mutoh,*^a Noriko Tsuchida,^c Shinichi Saito*^a and Youichi Ishii*^b

^a Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

^b Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-3-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.

^c Department of Liveral Arts, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyma-mach, Iruma-gun, Saitama 350-0495, Japan.

Table of contents

General considerations	S2
Synthesis of 2-CTe and copies of NMR spectra	S3–S6
Synthesis of 2-CSe and copies of NMR spectra	S7–S8
Synthesis of 2-CS and copies of NMR spectra	S9-S10
Synthesis of 2-CO and copies of NMR spectra	S11–S12
Experimental procedure for reactions of 2-CTe	S13
X-ray diffraction studies	S14–15
Computational details and optimized Cartesian coordinates for 2-CE.	S16–24

General Considerations. All reactions were carried out under a dry inert gas atmosphere using standard Schlenk techniques unless otherwise noted. Chemical shifts are reported in δ , referenced to residual ¹H and ¹³C signals of CDCl₃ as internal standards (δ 7.24 for ¹H NMR and δ 77.0 for ¹³C NMR) or to the ¹²⁵Te signal of PhTeTePh (δ 422.0 relative to MeTeMe at δ 0) as an external standard. ATR-IR spectra were recorded on a JASCO FT/IR-4600 spectrometer with a diamond attenuated total reflectance unit. Elemental analyses were performed on a Perkin-Elmer 2400 series II CHN analyzer.

Dichloromethane (CH₂Cl₂) and tetrahydrofuran (THF) of anhydrous grade were purchased from commercial sources and were degassed by three freeze-pump-thaw cycles before use. Hexane was distilled, degassed and stored over activated molecular sieves (4A). CDCl₃ was passed through a small column of neutral alumina, degassed by freeze-pump-thaw cycles, and stored over activated molecular sieves (4A). [RuCl₂(CE)(H₂IMes)(dmap)₂] (**1-CE**) was obtained according to the literature.^{S1} Cyclopentadienyllithium (CpLi) was purchased from Strem and stored in a Schlenk flask under an inert atmosphere. Triethyl borane (Et₃B) 1.0 M solution in hexane was used as received from Kanto Chemical Co., Inc.

^{S1} Y. Mutoh, N. Kozono, M. Araki, N. Tsuchida, K. Takano and Y. Ishii, Organometallics, 2010, 29, 519–522.

[CpRuCl(CTe)(H₂IMes)] (2-CTe). A solid mixture of CpLi (15 mg, 0.21 mmol, 1.5 equiv) and [RuCl₂(CTe)(H₂IMes)(dmap)₂] (1-CTe, 120.0 mg, 0.14 mmol) was allowed to cool to -20 °C. To this was added THF (4.5 mL) and Et₃B (1.0 M solution in hexane, 0.28 mL, 0.28 mmol, 2.0 equiv) at -20 °C, and the mixture was stirred at the temperature for 0.5 h. To this was added hexane (50 mL), and the resulting suspension was passed through a pad of Celite. The pad was The combined filtrate was stored in a freezer for 7 days to give washed with hexane (10 mL). [CpRuCl(CTe)(H₂IMes)] (2-CTe) (55.0 mg, 0.085 mmol, 61% yield) as red crystals. IR (cm^{-1}) : 990 (v_{CTe}). ¹H NMR (CDCl₃, 300 MHz): δ 6.94, 6.93 (s, 2H each, Ar of Mes), 4.61 (s, 5H, Cp), 3.96 (s, 4H, N(CH₂)₂N), 2.39 (s, 6H, p-CH₃ of Mes), 2.32, 2.30 (s, 6H each, o-CH₃ of Mes). ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 331.0 (CTe), 211.6 (RuC(N)₂), 139.4 (Ar), 138.6 (Ar), 138.0 (Ar), 137.4 (Ar), 130.1 (Ar), 129.9 (Ar), 93.4 (Cp), 51.9 (CH₂), 21.2 (CH₃), 19.0 (CH₃), 18.6 (CH₃). ¹²⁵Te{¹H} NMR (CDCl₃, 95 MHz): δ 937. Anal. Calcd for C₂₇H₃₁ClN₂RuTe: C, 50.07; H, 4.82; N, 4.33. Found: C, 50.10; H, 4.50; N, 4.26.

Figure S1. ¹H NMR (300 MHz, CDCl₃) spectrum of 2-CTe.

Figure S2. ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) spectrum of 2-CTe.

Figure S3. ¹²⁵Te{¹H} NMR (95 MHz, an offset of 1000 ppm with a spectral window of 3000 ppm, CDCl₃) spectrum of **2-CTe**.

Figure S4. ¹²⁵Te{¹H} NMR (95 MHz, an offset of 1000 ppm with a spectral window of 1500 ppm, CDCl₃) spectrum of **2-CTe**.

Figure S5. ¹²⁵Te{¹H} NMR (95 MHz, an offset of 0 ppm with a spectral window of 2000 ppm, CDCl₃) spectrum of **2-CTe**.

Synthesis of [CpRuCl(CSe)(H₂IMes)] (2-CSe)

THF (4.0 mL) solution of CpLi (14 mg, 0.19 mmol, 1.5 equiv) To a and [RuCl₂(CSe)(H₂IMes)(dmap)₂] (1-CSe, 105.0 mg, 0.13 mmol) was added Et₃B (1.0 M solution in hexane, 0.26 mL, 0.26 mmol, 2.0 equiv) at room temperature, and the mixture was stirred for 16 h at the temperature. The solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 2/1) and recrystallization (CH₂Cl₂/hexane) to give 2-CSe (61.2 mg, 0.10 mmol, 79% yield) as orange crystals. IR (cm⁻¹): 1090 (v_{CSe}). ¹H NMR (CDCl₃, 300 MHz): δ 6.94 (s, 4H, Ar of Mes), 4.57 (s, 5H, Cp), 3.96 (s, 4H, N(CH₂)₂N), 2.39 (s, 6H, *p*-CH₃ of Mes), 2.31 (s, 12H, *o*-CH₃ of Mes). ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 319.5 (CSe), 212.8 (RuC(N)₂), 139.1 (Ar), 138.7 (Ar), 138.0 (Ar), 137.5 (Ar), 129.9 (Ar), 129.7 (Ar), 90.9 (Cp), 51.8 (CH₂), 21.1 (CH₃), 19.0 (CH₃), 18.5 (CH₃). Anal. Calcd for C₂₇H₃₁ClN₂RuSe: C, 54.14; H, 5.22; N, 4.68. Found: C, 54.16; H, 5.16; N, 4.63.

Figure S6. ¹H NMR spectrum (300 MHz, CDCl₃) of 2-CSe.

Figure S7. ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) spectrum of 2-CSe.

Synthesis of [CpRuCl(CS)(H₂IMes)] (2-CS)

THF (3.2 mL) solution of CpLi (12 mg, To a 0.17 mmol, 1.5 equiv) and [RuCl₂(CS)(H₂IMes)(dmap)₂] (1-CS, 85.0 mg, 0.11 mmol) was added Et₃B (1.0 M solution in hexane, 0.22 mL, 0.22 mmol, 2.0 equiv) at room temperature, and the mixture was stirred for 16 h at the temperature. The solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 2/1) and recrystallization (CH₂Cl₂/hexane) to give 2-CS (47.1 mg, 0.085 mmol, 77% yield) as orange crystals. IR (cm⁻¹): 1232 (v_{CS}). ¹H NMR (CDCl₃, 300 MHz): δ 6.94 (s, 4H, Ar of Mes), 4.52 (s, 5H, Cp), 3.96 (s, 4H, N(CH₂)₂N), 2.39 (s, 6H, *p*-CH₃ of Mes), 2.31 (s, 6H each, *o*-CH₃ of Mes). ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 300.5 (CS), 213.7 (RuC(N)₂), 138.9 (Ar), 138.8 (Ar), 138.0 (Ar), 137.4 (Ar), 129.7 (Ar), 129.6 (Ar), 89.2 (Cp), 51.7 (CH₂), 21.1 (CH₃), 19.0 (CH₃), 18.5 (CH₃). Anal. Calcd for C₂₇H₃₁ClN₂RuS: C, 58.73; H, 5.66; N, 5.07. Found: C, 58.67; H, 5.65; N, 5.04.

Figure S8. ¹H NMR spectrum (300 MHz, CDCl₃) of 2-CS.

Figure S9. ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) spectrum of 2-CS.

Synthesis of [CpRuCl(CO)(H₂IMes)] (2-CO)

mL) solution of CpLi (7 mg, То a THF (2.0)0.97 mmol, 1.5 equiv) and [RuCl₂(CO)(H₂IMes)(dmap)₂] (1-CO, 50.0 mg, 0.066 mmol) was added Et₃B (1.0 M solution in hexane, 0.13 mL, 0.13 mmol, 2.0 equiv) at room temperature, and the mixture was stirred for 16 h at the temperature. The solvent was removed under vacuum, and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 2/1) to give **2-CO** (28.5 mg, 0.053 mmol, 80% yield) as yellow crystals. IR (cm⁻¹): 1933 (v_{CO}). ¹H NMR (CDCl₃, 300 MHz): δ 6.98 (s, 4H, Ar of Mes), 4.34 (s, 5H, Cp), 3.95 (s, 4H, N(CH₂)₂N), 2.38 (s, 6H, p-CH₃ of Mes), 2.33, 2.31 (s, 6H each, o-CH₃ ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 214.8 (RuC(N)₂), 202.3 (CO), 138.7 (Ar), 138.6 of Mes). (Ar), 137.7 (Ar), 137.2 (Ar), 129.7 (Ar), 129.5 (Ar), 82.9 (Cp), 51.3 (CH₂), 21.1 (CH₃), 19.0 (CH₃), Anal. Calcd for C₂₇H₃₁ClN₂ORu: C, 60.49; H, 5.83; N, 5.23. Found: C, 60.35; H, 18.4 (CH₃). 5.58; N, 5.12.

Figure S10. ¹H NMR spectrum (300 MHz, CDCl₃) of 2-CO.

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum (126 MHz, CDCl₃) of 2-CO.

Reaction of [CpRuCl(CTe)(H₂IMes)] (2-CTe) with PPh₃ (Scheme 4). A mixture of [CpRuCl(CTe)(H₂IMes)] (**2-CTe**, 6.5 mg, 0.01 mmol) and PPh₃ (52.4 mg, 0.20 mmol, 20 equiv) in toluene (1 mL) was stirred at room temperature for 16 h. The ${}^{31}P{}^{1}H$ NMR analysis of the reaction mixture showed only one signal due to PPh₃ (δ –5.2). The mixture was allowed to warm to 100 °C and stirred for 25 h. The resulting mixture was dried under vacuum to leave orange solids. The ¹H and ³¹P{}^{1}H} NMR analysis of the solid indicated that no reaction of **2-CTe** proceeded.

Reaction of 2-CTe with S₈ (Scheme 5). A mixture of $[CpRuCl(CTe)(H_2IMes)]$ (2-CTe, 13.0 mg, 0.020 mmol) and S₈ (3.2 mg, 0.012 mmol, 5.0 equiv as S) in CH₂Cl₂ (0.5 mL) was stirred at room temperature for 16 h. The resulting mixture was dried under vacuum. The residue was purified by column chromatography on silica gel (hexane/EtOAc = 2/1) to give 2-CS (9.3 mg, 0.017 mmol, 84% yield) as yellow crystals. The spectroscopic data were consistent with those described above.

Reaction of 2-CTe with O₂ in the presence of Et₃B·DMAP (Scheme 6). A mixture of $[CpRuCl(CTe)(H_2IMes)]$ (2-CTe, 13.0 mg, 0.020 mmol) and Et₃B·DMAP (22.0 mg, 0.100 mmol, 5.0 equiv) in CH₂Cl₂ (13.0 mL) was bubbled with O₂ via a stainless needle for 15 min, and this was stirred at room temperature for 17 h under an atmosphere of oxygen (balloon). The resulting mixture was dried under vacuum. To the residue was added CDCl₃ and naphthalene (10.9 mg, 0.085 mmol) as an internal standard. The ¹H NMR analysis of the sample indicated the formation of 2-CO in 49% NMR yield.

X-ray Diffraction Studies. Diffraction data for **2-CTe** were collected on a Bruker Apex II Ultra X-ray diffractometer equipped with a Mo K α radiation ($\lambda = 0.71073$ Å) at -173 °C. Intensity data were processed using Apex2 software suit. The structure solution and refinements were carried out by using the Yadokari-XG^{S2} graphical interface. The position of the non-hydrogen atoms were determined by using the SHELXT^{S3} program and refined on F^2 by full-matrix leastsquares techniques using the SHELXL-2014^{S4} program. All the non-hydrogen atoms were refined with anisotropic thermal parameters, while all the hydrogen atoms were placed using AFIX instructions. Details of the diffraction data are summarized in Table S1.

^{S2} (a) K. Wakita, *Yadokari-XG, Software for Crystal Structure Analysis*, 2001. (b) C. Kabuto, S. Akine and E. Kwon, *J. Cryst. Soc. Jpn.*, 2009, **51**, 218–224.

^{S3} G. M. Sheldrick, Acta Crystallogr., Sect. A, 2015, 71, 3-8.

^{S4} (a) G. M. Sheldrick, *Acta Crystallogr., Sect. A*, 2008, **64**, 112–122. (b) G. M. Sheldrick, *Acta Crystallogr., Sect. C*, 2015, **71**, 3–8.

Table S1. Crystal data and structure refinement for 2-CTe						
CCDC	1500779					
Identification code	2-CTe (AS-2-6)					
Empirical formula	C ₂₇ H ₃₁ ClN ₂ RuTe					
Formula weight	647.66					
Temperature	100(2) K					
Wavelength	0.71073 Å					
Crystal system	Monoclinic					
Space group <i>P</i> 2 ₁ /n						
Unit cell dimensions	<i>a</i> = 13.7432(14) Å	$\alpha = 90^{\circ}$.				
	<i>b</i> = 14.4994(15) Å	$\beta = 109.4860(10)^{\circ}.$				
	c = 13.7674(14) Å	$\gamma = 90^{\circ}$.				
Volume	2586.3(5) Å ³					
Ζ	4					
Density (calculated)	1.663 Mg/m ³					
Absorption coefficient	1.832 mm^{-1}					
F(000)	1280					
Crystal size	$0.150 \times 0.110 \times 0.090 \text{ mm}$	n ³				
Theta range for data collection	2.106 to 27.499°.					
Index ranges	$-17 \le h \le 17, -18 \le k \le 1$	$8, -17 \le l \le 17$				
Reflections collected	28121					
Independent reflections	5910 [R(int) = 0.0179]					
Completeness to theta = 25.242°	100.0 %					
Refinement method	Full-matrix least-squares	on F^2				
Data / restraints / parameters	5910 / 0 / 295					
Goodness-of-fit on F ²	1.044					
Final R indices [I>2sigma(I)]	R1 = 0.0166, wR2 = 0.04	14				
R indices (all data)	R1 = 0.0181, wR2 = 0.04	23				
Extinction coefficient	n/a					
Largest diff. peak and hole	0.542 and -0.360 e.Å ⁻³					

Computational Details. All density functional theory (DFT) calculations were performed using the Gaussian 09 package.⁵⁵ The computers used in the present study are the computer facilities at the Academic Center for Computing Media Studies (ACCMS), Kyoto University, Japan. The geometries of **2-CE** were fully optimized using the M06⁵⁶ density functional with the SDD⁵⁷ basis set. The SDD basis set consists of the Dunning/Hujinaga full double- ζ basis set (D95) for the elements up to Ar and the Stuttgart/Dresden ECPs for the remainder of the periodic table. Vibrational analysis based on force constant matrices (Hessians) was carried out at the stationary points in order to identify them as minima (all positive constants), transition states (one negative force constant), or higher-order saddle points. Wiberg bond index⁵⁸ in the natural atomic orbital (NAO)⁵⁹ basis were evaluated by using the natural population analysis (NPA). Optimized Cartesian coordinates for **2-CE** were summarized in Tables S2 to S5.

^{S5} M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

^{S6} Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.

^{S7} (a) T. H. Dunning Jr., P. J. Hay, *In Modern Theoretical Chemistry*, H. F. Schaefer III, Ed.; Plenum
New York, 1976, pp. 1–28; (b) D. Andrae, U. Häsußermann, M. Dolg, H. Stoll and H. Preuß, *Theor. Chim. Acta*, 1990, **77**, 123–141.

^{S8} K. B. Wiberg, *Tetrahedron*, 1968, **24**, 1083–1096.

⁸⁹ A. E. Reed, L. A. Curtiss and F. Weinhold, *Chem. Rev.*, 1998, **88**, 899–926.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	44	0	0.348332	-1.061440	0.213383	
2	17	0	0.277581	-0.816505	2.657885	
3	52	0	-3.234317	-1.773819	-0.283371	
4	6	0	-1.421417	-1.094712	-0.002796	
5	7	0	1.786265	1.634605	0.238768	
6	6	0	0.135164	3.308308	0.359185	
7	1	0	-0.265727	3.810331	1.246222	
8	1	0	-0.182598	3.877814	-0.524701	
9	7	0	-0.390886	1.924049	0.273947	
10	6	0	0.583876	0.972536	0.192269	
11	6	0	3.099364	1.119737	-0.016826	
12	6	0	3.551989	1.088014	-1.351936	
13	6	0	-1.805972	1.809936	0.059439	
14	6	0	1.652053	3.098879	0.422264	
15	1	0	2.191815	3.630538	-0.370943	
16	1	0	2.081087	3.398529	1.385750	
17	6	0	-2.685477	1.852894	1.158112	
18	6	0	-4.064081	1.900690	0.900858	
19	1	0	-4.754421	1.913923	1.743403	
20	6	0	2.662554	1.537981	-2.482020	
21	1	0	2.509644	2.626568	-2.461030	
22	1	0	1.667493	1.079182	-2.422831	
23	1	0	3.104392	1.287463	-3.452269	
24	6	0	7.122685	-0.208288	-0.856346	
25	1	0	7.299837	-0.310856	-1.931747	
26	1	0	7 323133	-1 177903	-0 385826	
27	1	0	7 859244	0 501849	-0 460895	
28	6	0	3 469198	0.810956	2 476443	
20 29	1	ů 0	4 297454	0.642224	3 172277	
30	1	0 0	2 696810	0.050466	2 658154	
31	1	0	3 004211	1 773002	2.000104	
37	6	0	-4 573386	1 908812	-0 406360	
33	6	0	-3.667908	1.884316	-1.480754	

Table S2. Optimized Cartesian Coordinates for 2-CTe

34	1	0	-4.048503	1.882951	-2.501764
35	6	0	4.856069	0.638236	-1.610908
36	1	0	5.208558	0.596554	-2.640888
37	6	0	-2.285026	1.831431	-1.268189
38	6	0	-2.179578	1.784912	2.570816
39	1	0	-2.956581	2.085336	3.281258
40	1	0	-1.293067	2.410237	2.731431
41	1	0	-1.865136	0.759078	2.806495
42	6	0	5.717925	0.255822	-0.570835
43	6	0	5.248584	0.334962	0.751748
44	1	0	5.910851	0.053513	1.569980
45	6	0	3.947467	0.766336	1.052632
46	6	0	-6.058096	1.894599	-0.655995
47	1	0	-6.407077	0.863307	-0.802048
48	1	0	-6.321930	2.460605	-1.556396
49	1	0	-6.612604	2.313345	0.190515
50	6	0	-1.343549	1.728369	-2.438152
51	1	0	-1.847303	1.996967	-3.372332
52	1	0	-0.981237	0.693528	-2.534633
53	1	0	-0.459370	2.371023	-2.325541
54	6	0	2.482814	-2.041990	-0.244887
55	1	0	3.430695	-1.611054	0.043575
56	6	0	1.715790	-2.972810	0.519206
57	1	0	1.950136	-3.310448	1.519130
58	6	0	0.541007	-3.332052	-0.220473
59	1	0	-0.235364	-4.012726	0.098060
60	6	0	0.567480	-2.592119	-1.454213
61	1	0	-0.178361	-2.640804	-2.236119
62	6	0	1.756789	-1.778371	-1.459726
63	1	0	2.087405	-1.146899	-2.272572

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	44	0	-0.219770	1.159675	0.156708	
2	17	0	-0.131512	1.009369	2.612003	
3	6	0	1.557371	1.307917	-0.050437	
4	7	0	-1.462333	-1.628028	0.264723	
5	6	0	0.300235	-3.177902	0.462211	
6	1	0	0.685424	-3.594914	1.399365	
7	1	0	0.705813	-3.774771	-0.364955	
8	7	0	0.728234	-1.766127	0.313620	
9	6	0	-0.308446	-0.883733	0.205117	
10	6	0	-2.809149	-1.202406	0.023339	
11	6	0	-3.288333	-1.212573	-1.303378	
12	6	0	2.128091	-1.555875	0.075660	
13	6	0	-1.229688	-3.080568	0.437656	
14	1	0	-1.679272	-3.636718	-0.395257	
15	1	0	-1.693512	-3.428728	1.367743	
16	6	0	3.025220	-1.486617	1.157982	
17	6	0	4.397060	-1.408224	0.872828	
18	1	0	5.101342	-1.332339	1.700497	
19	6	0	-2.402999	-1.629068	-2.450152	
20	1	0	-2.290724	-2.721871	-2.490096	
21	1	0	-1.393845	-1.207492	-2.363617	
22	1	0	-2.831230	-1.312595	-3.407692	
23	6	0	-6.915404	-0.109398	-0.755676	
24	1	0	-7.073719	0.142262	-1.809423	
25	1	0	-7 219263	0 751730	-0 150019	
26	1	0	-7 591026	-0 937181	-0 506265	
20 27	6	0	-3 149076	-0 874714	2 518370	
27	1	0	-3 979371	-0.852223	3 231751	
20	1	0	-2 505576	-0.002117	2 698231	
30	1	0	-2 523353	-1 748357	2.090291	
31	6	0	2.323333 2 88137 <i>1</i>	-1 403435	_0 443947	
31	6	0	3 060338	_1 502130	-1 500321	
33	1	0	4.321122	-1.498439	-2.528493	

Table S3. Optimized Cartesian Coordinates for 2-CSe

34	6	0	-4.618781	-0.834699	-1.541328
35	1	0	-4.991405	-0.820506	-2.565120
36	6	0	2.583005	-1.576162	-1.259779
37	6	0	2.540337	-1.425786	2.578706
38	1	0	3.364740	-1.587291	3.280918
39	1	0	1.753530	-2.160184	2.789457
40	1	0	2.094516	-0.442928	2.781713
41	6	0	-5.481373	-0.487023	-0.489129
42	6	0	-4.984240	-0.525519	0.824425
43	1	0	-5.643561	-0.267682	1.652678
44	6	0	-3.655618	-0.882099	1.104176
45	6	0	6.353543	-1.252373	-0.722685
46	1	0	6.602461	-0.194683	-0.882079
47	1	0	6.651868	-1.799241	-1.624080
48	1	0	6.960775	-1.610591	0.115444
49	6	0	1.608405	-1.612234	-2.406548
50	1	0	2.121676	-1.809712	-3.353163
51	1	0	1.094474	-0.642739	-2.492651
52	1	0	0.830012	-2.376994	-2.270733
53	6	0	-2.403637	1.951469	-0.366040
54	1	0	-3.323479	1.459376	-0.082938
55	6	0	-1.723538	2.965659	0.375220
56	1	0	-2.001110	3.319205	1.358441
57	6	0	-0.565649	3.386965	-0.357838
58	1	0	0.149081	4.138005	-0.053954
59	6	0	-0.513408	2.602704	-1.565047
60	1	0	0.239176	2.682096	-2.337842
61	6	0	-1.638013	1.702758	-1.560614
62	1	0	-1.901927	1.017116	-2.353191
63	34	0	3.150731	1.972206	-0.341332

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	44	0	-0.104593	1.273048	0.090101	
2	17	0	0.035181	1.172741	2.544933	
3	6	0	1.661565	1.530879	-0.143847	
4	7	0	-1.148978	-1.600914	0.205416	
5	6	0	0.722503	-3.015592	0.407555	
6	1	0	1.115612	-3.391670	1.358843	
7	1	0	1.191240	-3.589483	-0.401832	
8	7	0	1.045388	-1.577409	0.252663	
9	6	0	-0.053040	-0.772344	0.150478	
10	6	0	-2.529736	-1.263132	0.025265	
11	6	0	-3.069173	-1.276051	-1.277232	
12	6	0	2.429098	-1.257496	0.045533	
13	6	0	-0.809936	-3.034839	0.346047	
14	1	0	-1.194231	-3.598420	-0.514361	
15	1	0	-1.268492	-3.444841	1.253444	
16	6	0	3.295284	-1.106909	1.145499	
17	6	0	4.662407	-0.921619	0.885975	
18	1	0	5.341382	-0.786512	1.727138	
19	6	0	-2.227889	-1.632483	-2.476455	
20	1	0	-2.146760	-2.722223	-2.592036	
21	1	0	-1.208052	-1.237499	-2.397964	
22	1	0	-2.679000	-1.246005	-3.397606	
23	6	0	-6.719731	-0.374499	-0.539146	
24	1	0	-6.946684	-0.139175	-1.584036	
25	1	0	-7 028969	0 477439	0.076911	
26	1	0	-7 342488	-1 229402	-0 247223	
23 27	6	0	-2.776736	-1 059431	2 543319	
27	1	ů 0	-3 559184	-0 885648	3 289084	
20	1	0	-1 991872	-0.301896	2 676473	
30	1	0	-2 312586	-2 030342	2.070475	
31	1 6	0	5 171010	_0 887535	_0 420530	
27	6	0	J.1/1/1919 A 282402	-0.002333	-1 /0/600	
33	1	0	4 661894	-1.052017	-2 515599	

Table S4. Optimized Cartesian Coordinates for 2-CS

34	6	0	-4.428832	-0.966571	-1.445005
35	1	0	-4.849045	-0.953369	-2.450276
36	6	0	2.911577	-1.237076	-1.280563
37	6	0	2.785188	-1.067748	2.559096
38	1	0	3.602683	-1.212713	3.273182
39	1	0	2.012677	-1.821206	2.753542
40	1	0	2.309994	-0.096830	2.761242
41	6	0	-5.257694	-0.684610	-0.348486
42	6	0	-4.699257	-0.725415	0.941000
43	1	0	-5.333045	-0.522301	1.803607
44	6	0	-3.343952	-1.020211	1.152063
45	6	0	6.635081	-0.626537	-0.669701
46	1	0	6.813463	0.444821	-0.829065
47	1	0	6.989895	-1.154587	-1.561822
48	1	0	7.248402	-0.938803	0.182316
49	6	0	1.964272	-1.343447	-2.445535
50	1	0	2.507814	-1.505136	-3.381901
51	1	0	1.384411	-0.412740	-2.542747
52	1	0	1.238483	-2.159841	-2.321649
53	6	0	-2.332459	1.924604	-0.374811
54	1	0	-3.211332	1.388125	-0.045750
55	6	0	-1.684370	2.995306	0.318513
56	1	0	-1.945731	3.355382	1.303639
57	6	0	-0.579832	3.461132	-0.465231
58	1	0	0.102046	4.257742	-0.205455
59	6	0	-0.524778	2.648981	-1.655711
60	1	0	0.194303	2.750760	-2.457144
61	6	0	-1.601069	1.694617	-1.593466
62	1	0	-1.851191	0.974638	-2.358974
63	16	0	3.099164	2.215331	-0.449412

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
	 1		0.016023	1 242052	0.020147	
1	44	0	-0.010923	1.342933	0.039147	
2	1/	0	0.201707	1.220081	2.304398	
3	0	0	1.811888	1.595250	-0.11/344	
4		0	-1.033900	-1.34/330	0.144340	
5	0	0	0.842987	-2.920093	0.4/0/08	
6 7	1	0	1.105968	-3.1/3444	1.511233	
/	1	0	1.415304	-3.56/921	-0.196460	
8	1	0	1.158246	-1.499/56	0.206063	
9	6	0	0.050294	-0.700767	0.092434	
10	6	0	-2.425572	-1.233111	0.015909	
11	6	0	-3.026810	-1.285639	-1.258064	
12	6	0	2.530434	-1.144607	-0.002939	
13	6	0	-0.668392	-2.979240	0.234695	
14	1	0	-0.926721	-3.495847	-0.700579	
15	1	0	-1.216350	-3.458413	1.053264	
16	6	0	3.404337	-1.018046	1.093843	
17	6	0	4.749694	-0.715308	0.833230	
18	1	0	5.429795	-0.586930	1.674646	
19	6	0	-2.235981	-1.642767	-2.491307	
20	1	0	-2.190416	-2.732133	-2.627215	
21	1	0	-1.203670	-1.276988	-2.438563	
22	1	0	-2.706304	-1.227488	-3.390186	
23	6	0	-6.660471	-0.458217	-0.358461	
24	1	0	-6.984551	-0.463608	-1.404083	
25	1	0	-6.915413	0.518509	0.069546	
26	1	0	-7.248246	-1.211063	0.180683	
27	6	0	-2.563574	-0.973238	2.540008	
28	1	0	-3.324552	-1.064852	3.322119	
29	1	0	-1.999312	-0.044653	2.704684	
30	1	0	-1.833461	-1.783202	2.663520	
31	6	0 0	5.236480	-0.562912	-0.472979	
32	6	0 0	4 348099	-0 743453	-1.546339	
33	1	0	4.714684	-0.641547	-2.567537	

Table S5. Optimized Cartesian Coordinates for 2-CO

34	6	0	-4.401877	-1.018078	-1.365143
35	1	0	-4.869865	-1.038996	-2.348915
36	6	0	2.995752	-1.032662	-1.331648
37	6	0	2.926064	-1.199628	2.508774
38	1	0	3.604942	-0.706633	3.211745
39	1	0	2.888468	-2.264506	2.780560
40	1	0	1.926855	-0.771088	2.649111
41	6	0	-5.184597	-0.736204	-0.235756
42	6	0	-4.564338	-0.737334	1.025892
43	1	0	-5.162711	-0.539591	1.914940
44	6	0	-3.192587	-0.988390	1.175902
45	6	0	6.674528	-0.190307	-0.721844
46	1	0	6.776454	0.897261	-0.826365
47	1	0	7.053890	-0.645496	-1.643675
48	1	0	7.319356	-0.502734	0.106555
49	6	0	2.048195	-1.183675	-2.491687
50	1	0	2.592615	-1.241847	-3.439713
51	1	0	1.362193	-0.324713	-2.540061
52	1	0	1.425153	-2.084265	-2.393820
53	6	0	-2.215470	1.954824	-0.325975
54	1	0	-3.079625	1.441929	0.071864
55	6	0	-1.535450	3.066929	0.281970
56	1	0	-1.741805	3.465265	1.265295
57	6	0	-0.485625	3.501345	-0.581537
58	1	0	0.197267	4.318146	-0.399855
59	6	0	-0.488724	2.629972	-1.739999
60	1	0	0.167860	2.708512	-2.595082
61	6	0	-1.564707	1.689337	-1.583012
62	1	0	-1.854890	0.934823	-2.299371
63	8	0	2.911908	2.014528	-0.256193