Developing the Family of Picolinate Ligands for Mn²⁺ Complexation

Attila Forgács,^a Rosa Pujales-Paradela,^b Martín Regueiro-Figueroa,^b Laura Valencia,^c David Esteban-Gómez,^b Mauro Botta^{a*} and Carlos Platas-Iglesias^{b*}

Electronic Supplementary Information(ESI)

Figure S1. ¹H (300 MHz, 25 °C, top) and ¹³C (75 MHz, 25 °C, bottom) NMR spectra of the ethyl ester precursor of H₂DPADA recorded in CDCl₃ solution.

Figure S2. ¹H (500 MHz, 25 °C, pD 7.0, top) and ¹³C (125.8 MHz, 25 °C, pD 7.0, bottom) NMR spectra of H₂DPADA recorded in D₂O solution.

Figure S3. ¹H (300 MHz, 25 °C, top) and ¹³C (75 MHz, 25 °C, bottom) NMR spectra of ethyl ester precursor of H₃DPAA recorded in CDCl₃ solution.

Figure S4. ¹H (500 MHz, 25 °C, pD 7.0, top) and ¹³C (125.8 MHz, 25 °C, pD 7.0, bottom) NMR spectra of H₃DPAA recorded in D₂O solution.

Figure S5. ¹H (300 MHz, 25 °C, top) and ¹³C (75 MHz, 25 °C, bottom) NMR spectra of ethyl ester precursor of H₂DPAPhA recorded in CDCl₃ solution.

Figure S6. ¹H (300 MHz, 25 °C, pD 7.0, top) and ¹³C (75 MHz, 25 °C, pD 7.0, bottom) NMR spectra of H₂DPAPhA recorded in D₂O solution.

Figure S7. ¹H (500 MHz, 25 °C, top) and ¹³C (125.8 MHz, 25 °C, bottom) NMR spectra of ethyl ester precursor of H₂DPAHPhA recorded in CDCl₃ solution.

Figure S8. ¹H (500 MHz, 25 °C, pD 7.0, top) and ¹³C (125.8 MHz, 25 °C, pD 7.0, bottom) NMR spectra of H₂DPAHPhA recorded in D₂O solution.

Figure S9. Observed (top) and theoretical (bottom) mass spectral isotopic distribution for the fragment [DPA(OEt)₂DA+H]⁺ obtained in CH₃CN.

Figure S10. Observed (top) and theoretical (bottom) mass spectral isotopic distribution for the fragment [Mn(DPADA+Na)]⁺ obtained from a solution of the complex in MeOH.

Figure S11. Observed (top) and theoretical (bottom) mass spectral isotopic distribution for the fragment $[DPA(OEt)_2A+H]^+$ obtained from a solution of this compound in CH_3CN .

Figure S12. Observed (top) and theoretical (bottom) mass spectral isotopic distribution for the fragment [Mn(DPAA)]⁻ obtained from a solution of this compound in MeOH.

Figure S13. Observed (top) and theoretical (bottom) mass spectral isotopic distribution for the fragment [DPA(OEt)₂PhA+H]⁺ obtained in CH₃CN.

Figure S14. Observed (top) and theoretical (bottom) mass spectral isotopic distribution for the fragment [Mn(DPAPhA+Na)]⁺ obtained from a solution of the complex in MeOH.

Figure S15. Observed (top) and theoretical (bottom) mass spectral isotopic distribution for the fragment [DPA(OEt)₂HPhA+H]⁺ obtained in CH₃CN.

Figure S16. Observed (top) and theoretical (bottom) mass spectral isotopic distribution for the fragment [Mn(DPAHPhA+H)]⁺ obtained from a solution of the complex in MeOH.

Figure S17. Paramagnetic relaxation enhancement of water proton nuclei (R_1^{obs}) as a function of [Mn(DPAHPhA)] concentration.

Figure S18. ¹H NMRD profiles recorded at different temperatures for [Mn(DPAHPhA)].

Figure S19. Paramagnetic relaxation enhancement of water proton nuclei (R_1^{obs}) as a function of [Mn(DPADA)] concentration.

Figure S20. ¹H NMRD profiles recorded for [Mn(DPADA)] above the cmc.

Center	Atomic	Coordinates (Angstroms)					
Number	Number			Х	Y	Z	
1	8			1.561826	1.930602	0.895871	
2	8			-1.479745	2.046495	0.737358	
3	8			3.605611	2.094378	1.832385	
4	7			2.164681	-0.357324	-0.268744	
5	7			-2.140233	-0.261626	-0.351088	
6	8			-3.553170	2.351710	1.566774	
7	6			-2.396779	-1.441632	-0.927529	
8	6			2.405467	-1.498232	-0.925764	
9	7			0.003023	-1.901950	-0.834953	
10	6			2.759846	1.523873	1.128198	
11	6			3.148270	0.235583	0.420528	
12	6			-4.404525	-0.125146	0.399745	
13	1			-5.157378	0.429105	0.944387	
14	6			3.670765	-2.081313	-0.934786	
15	1			3.839225	-3.005840	-1.473950	
16	6			-2.702057	1.702053	0.941601	
17	6			1.216629	-2.086802	-1.648100	
18	1			1.074002	-1.549124	-2.590128	
19	1			1.404308	-3.140570	-1.891301	
20	6			4.436922	-0.287677	0.466381	
21	1			5.199626	0.222573	1.039480	
22	6			-3.111433	0.381749	0.309631	
23	6			-1.222297	-2.078135	-1.630579	
24	1			-1.432710	-3.135288	-1.838714	
25	1			-1.074515	-1.573386	-2.589754	
26	6			-3.665160	-2.015904	-0.882557	
27	1			-3.845455	-2.973803	-1.355665	
28	6			4.700241	-1.461845	-0.231713	
29	1			5.692449	-1.897929	-0.219994	
30	6			-4.683016	-1.342579	-0.212902	
31	1			-5.677762	-1.769890	-0.160821	
32	8			0.131742	1.486210	-1.975402	
33	1			0.903259	2.099664	-1.956899	
34	1			-0.629832	2.107909	-2.047225	
35	6			0.006293	-2.765701	0.369611	
36	1			-0.711373	-3.583827	0.258150	
37	1			0.991649	-3.2296/4	0.4/0264	
38	8			-1.680336	3.519/10	-1.598611	
39	1			-1.652600	3.190666	-0.6/03/3	
40	1 O			-2.617023	3.53/430	-1.834000	
41	8			1.92/802	3.4/948/	-1.3//853	
42	1			1.841040	3.124197	-0.463618	
43	L C			2.8//46/	3.505390	-1.352/66	
44	0 2 5			-0.260005	-2.005229	1./21408	
40	20			0.023304	0.403493	0.003/33	
40	0			-0.521521	-2.014000	2.0/9002	
4 / 	o 			-0.141/40	-0.794383	1.705597	
E(RTPSSh) = ·	-2613.809504	41 Hart	ree				
Zero-point correction = 0.341598 Hartree/particle							
Sum of electronic and thermal Energies = -2613.437362 Hartree							
Sum of electronic and thermal Enthalpies = -2613.436418 Hartree							
Sum of elect:	ronıc and th	nerma⊥	Free Er	nergies = -	2613.532353	Hartree	

Table S1. $[Mn(DPAA)(H_2O)]$ - \cdot 2H₂O, TPSSh/tzvp, aqueous solution (0 Imaginary Frequencies)

S22

Center	Atomic		Coordinates (Angstroms)		
Number	Number	Х	Y	Z	
1	 Q	-1 666092	 _2 1707/7	0 738027	
1	0	1 338354	-2.1/9/4/	0.730027	
2	0	-3 500741	-2.510973	2 00/311	
3	0 7	-2 120122	-1.077019	_0 5/1057	
4	7	-2.130123	0.107012	-0.541957	
5	/	2.001953	-0.198412	-0.000003	
0	0	3.100104	-2.309930	1 402700	
/	6	2.349799	U./9451U 1 101540	-1.493/90	
0	0	-2.3/002/	1.121040	-1.370390	
9	l C	0.043041	1 507025	-1.52/529	
1 U 1 1	6	-2.707889	-1.39/233	L.U3/300	
	6	-3.155582	-0.45/8/6	0.123034	
	0	4.319180	-0.000109	-0.256700	
13	1 C	5.054210	-1.25/2/4	0.273093	
14	6	-3.6/9521	1.568872	-1.61/895	
15		-3.849951	2.379836	-2.3158/4	
10	6	2.477051	-2.036206	0.835259	
10	6	-1.205416	1./42438	-2.105/92	
18	1	-1.020896	1.140466	-2.99/456	
19	l	-1.483244	2./486/2	-2.440920	
20	6	-4.4/0153	-0.040167	-0.029185	
21	l	-5.252/45	-0.51/08/	0.545656	
22	6	2.96/935	-0.912834	-0.05/253	
23	6	1.242930	1.581905	-2.161207	
24	1	1.643253	2.544899	-2.498665	
25	1	0.938968	1.026155	-3.050518	
26	6	3.68/849	1.071696	-1.779410	
27	1	3.936032	1.870094	-2.468312	
28	6	-4.736909	0.979293	-0.938036	
29	1	-5.752527	1.318095	-1.104836	
30	6	4.683407	0.332389	-1.154792	
31	1	5.727790	0.538327	-1.357356	
32	25	-0.099778	-0.854227	-0.123108	
33	8	-0.279915	-1.775042	-2.168014	
34	1	-1.076623	-2.358770	-2.171885	
35	1	0.463124	-2.411997	-2.305646	
36	8	1.548533	-3./81406	-1.982466	
37	1	1.569400	-3.526250	-1.034142	
38	1	2.468606	-3.756262	-2.276344	
39	8	-2.193089	-3.646292	-1.629264	
40	1	-2.109415	-3.349160	-0.699404	
41	1	-3.137482	-3.603105	-1.828924	
42	8	0.084724	-0.070371	1.963578	
43	1	-0.455594	-0.556386	2.636874	
44	1	0.973614	0.033454	2.380880	
45	8	-1.429342	-1.43/393	3.830653	
46	8	2.527899	-0.065322	3.268151	
4 /	1	3.159990	0.656761	3.156037	
48	1	2.970597	-0.860300	2.903432	
49	1	-1.775210	-0.887533	4.545953	
50	1	-2.221769	-1.741950	3.334023	
51	6	0.134055	2.786717	-0.340766	
52	6	-1.017847	3.394159	0.186229	
53	6	1.379007	3.21/901	0.147093	

Table S2. $[Mn(DPAPhA)(H_2O)_2] \cdot 4H_2O$, TPSSh/tzvp, aqueous solution (0 Imaginary Frequencies)

54	6	-0.924033	4.371690	1.172596
55	5 1	-2.001895	3.112001	-0.159991
56	5 6	1.461686	4.196236	1.133487
57	1	2.299140	2.794613	-0.229836
58	6	0.313687	4.781956	1.659472
59) 1	-1.836107	4.816819	1.555075
60) 1	2.440996	4.502270	1.485091
61	. 1	0.382256	5.544287	2.426663
E (RTPSS Zero-pc	Sh) = -2846.835	00002 Hartree = 0 466321 Hartree/parti		
Sum of	electronic and	thermal Energies = -2846	329197 Hartr	٥٥
Sum of Sum of	electronic and electronic and	thermal Enthalpies = -284 thermal Free Energies = -	46.328252 Har -2846.442871	tree Hartree